
Mechanizing Feng-Ying Quantum Hoare Logic In Coq for
Formal Proofs of Programs with Quantum and Classical

Variables

Mustafa Samir Khalil

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Dr. João Fernando Peixoto Ferreira

Examination Committee

Chairperson: Prof. Dr. José Luı́s Brinquete Borbinha
Supervisor: Prof. Dr. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Dr. Luı́s Soares Barbosa

October 2021

Acknowledgments

I would like to thank the Global Platform for Syrian Students for their generous support for me to finish

my studies. especially Dr. Helena Barroco, I would also like to dedicate this work to the memory of Dr.

Jorge Sampaio, the former president of the Portuguese republic and the founder of the Global Platform

for Syrian Students. I would like to also to thank my parents for being there for me all this time, and

my brothers Dr. Ali and Dr. Ehab for their friendship. My appreciation goes to my supervisor, Dr. João

Fernando Ferreira for his support in this work along this year, and to Dr. Professor Luı́s Soares Barbosa

for his valuable comments to earlier versions of this work. Last but not least, to all my professors, friends

and colleagues that helped me grow as a person and were always there for me during the good and bad

times in my life.

Abstract

Hoare logic is a powerful tool for software reliability. It has been used to prove the correctness of

many programs and protocols, covering many types of programs, like deterministic, non-deterministic,

recursive, parallel, concurrent... and it is a suitable candidate to provide safe quantum programs, as

other ways of testing and debugging could have a high cost (time and hardware resources), or not

reliable in the quantum case. In this thesis, we present an overview of Quantum computing, Quantum

Hoare Logic and its mathematical foundations are discussed and compared with some examples and

real-world applications of quantum algorithms, and we implemented a mechanization of the logic in Feng

and Ying [1] using Coq The Theorems prover.

Keywords

Quantum Computing, Formal Verification, Quantum Hoare Logic and Programming languages

iii

Resumo

A lógica de Hoare é uma ferramenta poderosa para a verificação formal de software. Tem sido usado

para provar a correção de muitos programas e protocolos, com varios tipos de programas, como de-

terminı́sticos, não determinı́sticos, recursivos, paralelos, concorrentes ... e é um candidato adequado

para asegurar a correção dos programas quânticos, como outras formas de teste e depuração tem um

custo alto, ou não são confiáveis, no caso quântico. Neste tese vamos fazer uma curta introdução para

computação quântica, Quantum Hoare Logic e seus fundamentos matemáticos que serão discutidos

e comparados com alguns exemplos e aplicações do mundo real de algoritmos quânticos, e vamos

implementar uma mecanização da lógica em Feng et al. [1] usando o provador de teoremas Coq.

Palavras Chave

Computação quântica, verificação formal, lógica Quantum Hoare e linguagens de programação

v

Contents

1 Introduction 1

1.1 The Challenge of Correctness . 3

1.2 Formal Verification of Quantum Programs . 4

1.3 Objectives and Contributions . 5

1.4 Organization of the Document . 5

2 Quantum Computation: An overview 7

2.1 A Brief History of Quantum Computing . 9

2.2 Mathematical Preliminaries . 10

2.2.1 Hilbert space . 10

2.2.2 Tensor Product . 12

2.2.3 Density Operators . 12

2.2.4 Unitary Transformation . 14

2.2.5 Superposition and Entanglement . 15

2.2.6 Measurement . 15

2.3 Quantum Circuit Model . 16

2.3.1 Quantum gates . 16

2.3.2 Quantum Oracles . 18

2.4 Some Quantum Algorithms . 18

2.4.1 Overview . 18

2.4.2 Quantum Teleportation . 18

2.4.3 Grover’s Algorithm . 19

2.4.4 Deutsch-Josza Algorithm . 21

2.5 Quantum Programming Languages and Frameworks . 23

2.5.1 OpenQasm . 23

2.5.2 Qiskit . 24

2.5.3 Q# . 25

2.5.4 Cirq . 25

vii

2.5.5 Silq . 26

3 Survey: Hoare Logics for Quantum Programs 29

3.1 Chadha, Mateus and Sernadas’s EEQPL . 31

3.1.1 EEQPL rules . 31

3.2 Yoshihiko Kakutani’s QHL . 32

3.2.1 QHL rules . 32

3.3 Mingsheng Ying’s qPD . 33

3.3.1 qPD rules . 34

3.4 Feng-Ying Hoare Logic . 35

3.4.1 Feng-Ying Logic rules . 36

4 A Verified Quantum Programming Language with Hybrid Variables 39

4.1 Syntax . 41

4.2 Variables and Types . 42

4.3 Quantum-Classical State . 42

4.4 Quantum-Classical Assertions . 43

4.5 State Update and Semantics . 44

4.6 A Hoare Logic for Quantum-Classical Programs . 47

4.7 A Use Case: Quantum Teleportation . 50

4.7.1 Reasoning using Operational Semantics . 51

4.7.2 Reasoning using Hoare Logic . 53

5 Mechanization in Coq 57

5.1 Logic Mechanization . 59

5.2 Implementation Details . 59

5.2.1 Syntax.v . 60

5.2.2 State.v . 62

5.2.3 Semantics.v . 66

5.2.4 Assertion.v . 67

5.2.5 Logic.v . 69

5.2.6 Soundness.v . 70

5.2.7 Utils.v . 72

5.2.8 MatricesConverter.py . 72

5.2.9 Examples . 73

viii

6 Conclusion 75

6.1 Results . 77

6.2 Limitations of the Current Solution . 77

6.3 Suggestions and Future work . 78

6.3.1 Soundness and Completeness . 78

6.3.2 Automating proofs . 78

6.3.3 Discard Operation . 78

6.3.4 The Dimensional Explosion Problem . 78

6.3.5 Enhancing the Arithmetic, Boolean and Matricial Expressiveness 79

6.3.6 Interoperability with External Quantum Computation Platforms 79

A Some Proofs and Calculations 85

A.1 Theorems . 85

A.2 Calculations . 87

ix

x

List of Figures

2.1 Bell State . 17

2.2 Quantum Teleportation Algorithm . 19

2.3 Grover Algorithm . 20

2.4 Deutsh-Josza Algorithm (Source: Wikipedia) . 22

xi

xii

List of Tables

3.1 Comparison between different types of languages [1] . 35

5.1 A summary of files content in FY . 74

xiii

xiv

Listings

2.1 Quantum teleportation in OpenQasm . 23

2.2 Quantum teleportation in Qiskit . 24

2.3 Quantum teleportation in Q# . 25

2.4 Quantum teleportation in Cirq . 26

2.5 Quantum teleportation in Silq . 26

4.1 Quantum teleportation in FY . 50

xv

xvi

1
Introduction

Contents

1.1 The Challenge of Correctness . 3

1.2 Formal Verification of Quantum Programs . 4

1.3 Objectives and Contributions . 5

1.4 Organization of the Document . 5

1

2

Although quantum computing has not been yet used to solve problems that could not be solved with

a feasible complexity using classical computing, it has been constantly advancing in the last decades.

The increasing interest in quantum computing highlights the necessity to guarantee the correctness of

quantum programs. It has been shown that traditional ways of testing and debugging software are not

adequate to be used with quantum programs, due to an interesting feature of quantum systems, which

is: measuring a system state destroys it, which leads to aborting the computational process [2]. An

alternative, and much stronger, way to guarantee correctness is to use formal methods that guarantee

that quantum programs achieve what they are supposed to. However, the notion of correctness can

pose some challenges.

1.1 The Challenge of Correctness

Our human intuition and perception can handle, relatively easily, the principles of classical physics, like

Newtonian mechanics, because of its deterministic nature that can trace natural phenomena back to

their root causes. Since the dawn of modern computing in 1946 with the development of the first pro-

grammable electronic computer, ENIAC, writing (and verifying) algorithms was not trivial, but the ideas

were not very hard to understand, as they were based on classical physics. Later on, the development of

a new computing paradigm based on Quantum physics, with completely different non-deterministic pro-

gramming paradigms, brought to light issues, such as probabilities and non-determinism, that challenge

our intuition.

Programmers still face some challenges with non-deterministic programming, mainly due to the dif-

ficulty to reason about those programs. Reasoning about non-deterministic programs may involve rea-

soning about probability distributions, in which case Bayesian networks could be helpful to reason about

the probabilities distribution of the program state. Programmers can also use some conventional soft-

ware engineering testing techniques to gain confidence in that a program that they wrote is doing what

is meant to be doing: useful techniques include unit testing, integration testing (when several compo-

nents are involved), and debugging. For example, it is possible to write a test, running it multiple times,

and then measure the likelihood that the probability distribution of the results coincide with the desired

one. However, those techniques might not be the best criteria to judge if a non-deterministic program is

correct, since testing may cover only a limited space of cases.

A safer alternative is to prove mathematically that the program is correct. For example, the famous

computer scientist Tony Hoare proposed, based on the ideas of Robert W. Floyd, a system that formal-

izes the correctness of programs. This system is known as Hoare Logic and it is about determining if

some post-condition holds after executing a program starting from given pre-condition. The program,

3

pre-condition, and post-condition form a configuration, called Hoare triple, that is usually written as:

{Precondition} Program {Postcondition}

Informally, the meaning of the triple above is: if the Program starts in a state that satisfies the

Precondition and if it terminates, it terminates in a state that satisfies the Postcondition. For example:

the triple {x = 1}x := x + 1{x = 2} is valid, but the triple {x < 1}x := x + 1{x > 2} is invalid. A Hoare

logic for probabilistic programs was first proposed Lyle Ramshaw in [3]. In this work, the triple

{P [x < 1] =
1

3
)} x := x+ 1 {P [x < 2] =

1

3
}

is read as “if x is less than 1 with a probability of 1
3 , then by adding 1 to x, it will be less than 2 with the

same probability”. Probabilistic programs extend conventional imperative programs with probabilistic in-

structions, like probabilistic assignment, which can manipulate the probability distributions. For instance,

the assignment x := (0 : 1
2 , 2 : 1

4 ,−2 : 1
4) assigns x to 0 with a probability of 0.5, to 2 with a probability of

0.25, and to -2 with a probability of 0.25. Considering this assignment, the following triple holds:

{P [true] = 1} x := (0 :
1

2
, 2 :

1

4
,−2 :

1

4
) {P [x <= 0] =

3

4
}

As the statement x ≤ 0 holds for x = 0 or x = −2, hence

P [x <= 0] = P [x = 0] + P [x = −2] =
1

2
+

1

4
=

3

4

1.2 Formal Verification of Quantum Programs

In addition to the uncertainty of how useful using tests and debugging could be to assure the correctness

of a quantum program, the cost for such methods is high, at least in the meantime, where we live in the

Noisy intermediate-scale quantum (NISQ) era, [4]. This means that the current quantum computation

power can put between 50 to 300 qubits all together to execute a process, but without guaranteeing

fault-tolerance or exceeding the performance of classical computers.

The limitations of tests and debugging, together with the increasing importance of Quantum Com-

puting, has encouraged the formal methods research community to propose Hoare logics that can be

used to reason about quantum programs. For example, Chadha, Mateus, and Sernadas [5], Yoshihiko

Kakutani [6], and Mingsheng Ying [7] developed different variants of Hoare logic for quantum programs.

From those variants, Chadha, Mateus, and Sernadas’s EEQPL is the least expressive and, even though

it is proven to be sound, its completeness is still unknown (in contrast, Ying’s qPD was proven to be

4

sound and relatively complete). However, EEQPL is the only variant that considers quantum and clas-

sical variables together in a program. This is useful because it could save quantum resources from

representing those variables, and it satisfies the quantum circuit model, suggested by Deutsch [8]. More

recently, Feng and Ying extended the qPD logic to include classical variables, and also extended the

definition of a states and assertions to suit the new configuration [1]. The language of their logic is very

simple, expressive, and, similarly to qPD, it is proven to be sound and relatively complete. As future

work, Feng and Ying suggested mechanizing this logic using a sofware tool. In this project, we propose

to contribute towards this direction.

1.3 Objectives and Contributions

Our main contribution in this thesis is the implementation of a software tool to mechanize proofs for

programs with quantum and classical variables, written using a modified model of Feng-Ying Hoare

logic [1]. We used the theorems prover Coq to model the language, the operational semantics and the

proof system in Section 4.6. We started proving (formally) the soundness and the correctness of the

logic, and the correctness of some examples from the real world.

1.4 Organization of the Document

This thesis is organized as follows. In Chapter 2, we present a brief introduction to Quantum comput-

ing, mathematical preliminaries, some quantum algorithms, and some useful tools to develop quantum

programs. In Chapter 3, we present a survey of Hoare logics that are used to reason about quantum

programs, and a comparison between them in expressiveness, soundness and completeness. In Chap-

ter 4 we show our adapted model from Feng-Ying Language’s syntax, semantics and proof system.

Chapter 5 contains our contributions, mainly the mechanization of the logic in Chapter 4. Chapter 6, we

list the problems with our solution, and some suggestions for future to improve it.

5

6

2
Quantum Computation: An overview

Contents

2.1 A Brief History of Quantum Computing . 9

2.2 Mathematical Preliminaries . 10

2.3 Quantum Circuit Model . 16

2.4 Some Quantum Algorithms . 18

2.5 Quantum Programming Languages and Frameworks 23

7

8

The complexity of Quantum mechanics has introduced a new non-deterministic approach to writing

programs, in a different way from what we used to do with Classical computers. The concept of quantum

programs relies basically on two fundamental phenomenons, Superposition and Entanglement.

2.1 A Brief History of Quantum Computing

The main idea behind Quantum is exploiting the superposition of quantum-entangled information units,

or qubits [9]. Quantum entanglement [10] happens when more than one particle is formed in a shared

space with a small distance in such a manner that the quantum state of each particle of the group must

be described along with the states of the rest of the particles, even the most distant ones [11]. In 1934,

the EPR paper by Albert Einstein, Boris Podolsky, and Nathan Rosen [12] concluded the incomplete-

ness of the Quantum-mechanical description of physical reality given by wave functions. Later, Erwin

Schrödinger, In his response to “EPR paradox” paper, used the word “entanglement” (Verschränkung in

German) to describe the correlations between two particles that interact and then separate. Einstein and

Schrödinger were both not completely along with the concept of entanglement, as it violates the theory

of relativity, More specifically, the Information transfer speed limit. In 1964, John Stewart Bell argued the

principle of the locality, one of the key principles of EPR paradox was mathematically inconsistent with

the predictions of quantum theory using Bell’s Inequality in [13]. Bell’s work (namely Bell’s Inequality)

was used later in 1984 to develop the “Quantum key distribution Protocol” by Erkert [11] to prove its

security.

In 1994, Peter Shor from MIT’s Bell labs published the well-known quantum Natural Numbers Fac-

toring algorithm [14] that provides an exponential acceleration in finding the factors of a natural number

compared to the most effective classical factoring algorithm, exposing the famous RSA encryption pro-

tocol to danger. Quantum computers are composed of circuits. A circuit in a Quantum computer is

mainly composed of qubits (quantum bits), and quantum gates. Quantum gates can perform operations

on entangled qubits and change its state. Quantum algorithms are constructed by interconnecting and

manipulating qubits and Qauntum gates to achieve a defined goal. To perform reliable operations on

qubits, they need to be isolated from any external influence long enough to execute the whole program

besides the error correction operations before collapsing, which is a real challenge to offer. To improve

the efficiency of quantum computers, we could make the gates faster, the error correction mechanisms

more effective, and increase the numbers of gates that complete their operation correctly.

When a quantum computer can solve a problem that no classical computer could solve in any feasible

time (regardless of the type or usefulness of the problem), we say that “Quantum supremacy” is reached.

In 2019, Sycamore, a processor with 53 programmable superconducting qubits, managed to solve a

problem with temporal complexity of 10 thousand years in 200 seconds [15]. In December 2020, a

9

team of researchers in Beijing National Research Center claimed that their system, Jiuzhang, produced

results showing that their quantum computer performed, in minutes, calculations that could take more

than 2 billion years of effort by a powerful supercomputer 1.

2.2 Mathematical Preliminaries

In this section, we introduce the mathematical preliminaries required to support the remainder of the

work.

2.2.1 Hilbert space

Complex numbers play an essential role in quantum computing, specifically in representing the state of

a quantum system. The set of complex numbers is denoted by C and defined as:

C = {z : z = a+ bi, a, b ∈ R}

The state of a quantum system is represented using Hilbert Spaces.

Definition 1. A Hilbert Space H is a complex vector space with two operations:

1. Addition: + : H×H → H

2. Scalar Multiplication: . : H× C→ H

We will use the bra-ket notation to represent states in a Hilbert space. In more detail, it represents

a linear mapping |.〉 : S → C where S is a complex plane, it was used by Paul Dirac in 1939 [16] to

facilitate the calculations in Quantum physics. Hilbert spaces satisfy the following properties:

1. (H,+) is an Abelian group with a zero element, that is the zero vector.

2. 1. |ψ〉 = |ψ〉

3. λ(µ |ψ〉) = λµ |ψ〉

4. (λ+ µ) |ψ〉 = λ |ψ〉+ µ |ψ〉

5. (|φ〉+ |ψ〉)λ = λ |ψ〉+ λ |φ〉

6. (|φ〉+ |ψ〉) + |α〉 = |φ〉+ (|ψ〉+ |α〉)

Hilbert spaces are also provided with an inner product, defined as follows:

1https://www.sciencenews.org/article/new-light-based-quantum-computer-jiuzhang-supremacy

10

Definition 2. The inner product 〈.|.〉 : H×H → C is a map defined as:

1. 〈ψ|ψ〉 ≥ 0

2. 〈ψ|ψ〉 = 0 if and only if |ψ〉 = 0

3. 〈ψ|φ〉 = 〈φ|ψ〉, where a stands for complex conjugate of a.

4. 〈ψ|(λ1 |φ2〉+ λ2 |φ2〉)〉 = λ1 〈ψ|φ2〉+ λ2 〈ψ|φ2〉

For any ψ, φ, φ1, φ2 ∈ H and λ1, λ2 ∈ C

Using this definition, we also define the norm of |ψ〉, denoted by ||ψ||, as:

||ψ|| =
√
〈ψ|ψ〉

The vector ψ is called a unit vector if ||ψ|| = 1. And also, we say that two vectors ψ and φ are orthogonal

if 〈ψ|φ〉 = 0.

Example 1. Let |ψ〉 = (1√
3

√
2√
3
)T ; then 〈ψ|ψ〉 = 1

3 + 2
3 = 1.

Definition 3. A family {|ψi〉}i∈I of unit vectors forms an orthonormal basis of H iff

1. ∀i, j, i 6= j: ψi, ψj are orthogonals.

2. |ψ〉 =
∑
i∈I 〈ψi|ψ〉 |ψi〉 for all |ψ〉 ∈ H

A Hilbert space is defined as a complete inner product space. i.e, an inner product space in which

each Cauchy sequence of vectors has a limit.

A pure state of the system is described by a unit vector in its state subspace. For example, the state

space of a system of one qubit is a 2-dimensional Hilbert Space of the form

H2 = {a |0〉+ b |1〉 : a, b ∈ C}

and the qubit a |0〉+ b |1〉 is represented by the vector
(
a
b

)
, where

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

and |a|2, |b|2 represent the probabilities of resulting 0, 1 ,respectively, when the qubit is measured. Note

that |a|2 = a.a is the norm of the complex number a.

Remark 1. It is common to write |+〉 instead of |0〉+|1〉√
2

and |−〉 instead of |0〉−|1〉√
2

11

2.2.2 Tensor Product

Tensor product is used to represent the state space of a multi-qubit system.

Definition 4. The Tensor Product of two Hilbert Spaces is a Hilbert Space together with a bilinear

mapping φ : H1 ×H2 → H1 ⊗H2 such that

1. The set of all vectors φ(x, y) : x ∈ H1 and y ∈ H2 is a subset of H1 ⊗H2.

2. 〈x1 ⊗ x2, y1 ⊗ y2〉H1⊗H2
= 〈x1, y1〉H1

〈x2, y2〉H2
.

Lemma 1. The following assertions are true:

1. If H1 has the orthonormal basis {ψi}i≤n and H2 has the orthonormal basis {ψj}j≤m then H1⊗H2

has the basis {ψj ⊗ ψj}i≤n & j≤m.

2. We can generalize the statements above over a tensor product of multiple Hilbert Spaces. Let Hi
be one of those spaces with the orthonormal basis {ψiji}j≤ni

; then the set B of tensor products of

all Hi is

B = {⊗i |ψiji〉}

2.2.3 Density Operators

An operator is a rule that can be applied to a function to transform it into another function, or to transform

a vector to another vector in the same space. For instance, the derivation of a function D is an operator.

Observable are variables in quantum mechanics, like position, momentum, angular momentum, and en-

ergy, where its measurement characterizes the quantum state of a particle. One of quantum mechanics’

postulates states that there is an operator that corresponds to each physical observable.

Definition 5. A linear operator A on a Hilbert Space H is a mapping H → H that satisfies:

1. A(|ψ〉+ |φ〉) = A |ψ〉+A |φ〉

2. A(λ |ψ〉) = Aλ |ψ〉

for all |ψ〉 , |φ〉 ∈ H and λ ∈ C.

if {|ψi〉}i forms an orthonormal basis of H then the operator A can be written as a matrix: A =

(〈ψi|A |ψj〉)ij when H is finite-dimensional.

Definition 6. We say that an operator A is bounded if for a constant C > 0 and all |ψ〉 the following

inequality is satisfied:

12

||A |ψ〉 || ≤ C||ψ||

We write L(H) to denote all the bounded operators over H

Definition 7. The adjoint of an operator A, denoted as A†, is the only operator that satisfies

〈A |ψ〉 , |φ〉〉 = 〈|ψ〉 , A† |φ〉〉

Definition 8. An operator is called Hermitian if and only if A = A†.

Definition 9. An operator A is called positive if it is a linear operator that satisfies 〈ψ|A |ψ〉 ≥ 0 for all

states |ψ〉 ∈ H.

Lemma 2. All positive operators are Hermetian.

Proof. let A be a positive operator, or, ∀ψ : 〈ψ|A |ψ〉 ≥ 0, We can write A in the form: A = Re(A) +

iIm(A), where Re(A) and Im(A) are the real and imaginary parts of A, we can also write:

Re(A)† = (
A+A†

2
)† =

A† +A

2
= Re(A)

Im(A)† = (
A−A†

2i
)† =

A† −A
−2i

=
A−A†

2i
= Im(A)

For Im(A), as it is Hermetian and real, then it is diagonalizable, or, it could be written in the from

Im(A) = Φ.Λ.Φ† =
∑
i

|Φi〉 〈Φi|λi

where {Φi}i is an orthonomal basis of the space, let |x〉 be a vector from this space, then we can write

|x〉 =
∑
i

xi |Φi〉

We will prove that 〈x| Im(A) |x〉 is a real number, which is followed from:

〈x| Im(A) |x〉 = (
∑
i

xi 〈Φi|)(
∑
i

λi |Φi〉 〈Φi|)(
∑
i

xi |Φi〉)

=
∑
i

∑
j

λixixj〈Φj |Φi〉

=
∑
i

λixixi

=
∑
i

λi||xi||2

13

Following the same way we prove that 〈x|Re(A) |x〉 is also real, and since 〈x|A |x〉 ≥ 0, which is also

written as 〈x| (Re(A) + iIm(A)) |x〉 = 〈x|Re(A) |x〉 + i 〈x| Im(A) |x〉 ≥ 0, the part 〈x| Im(A) |x〉 could

only be a zero (it could not be pure imaginary as it was proven to be real), then A = Re(A) which is

Hermetian.

Definition 10. An operator A is called s trace class operator if the sequence

{〈ψi|A |ψi〉}i∈I

is summable , i.e,
∑
i∈I 〈ψi|A |ψi〉 <∞ for any orthonormal basis {|ψi〉} of H.

Definition 11. The trace of a trace class operator A is given by

tr(A) =
∑
i∈I
〈ψi|A |ψi〉

Lemma 3. tr(A) is independent of the choice of the orthonormal basis, or, if {|ψi〉} were an orthonormal

basis, and {|φi〉} were an orthonormal basis too, then

tr(A) =
∑
i∈I 〈ψi|A |ψi〉 =

∑
i∈I 〈φi|A |φi〉

Definition 12. A Quantum system could exist in a mixed state, or, when the system is observed, the

result could be |qi〉 with a probability pi. The operator

P =
∑
i

pi |qi〉 〈qi|

is called a Density Operator.

2.2.4 Unitary Transformation

Unitary Transformations model operations done via quantum gates on qubits to manipulate the proba-

bilistic distribution of measurement outcomes, in order to reach a desirable result out of the circuit that

contains them.

Definition 13. An operator U on H is called a unitary transformation if

U†U = IH

where U† = U
T

is the Moore-Penrose inverse, and IH is the identity operator on H.

Lemma 4. The following two assertions are true:

1. If a quantum system is in two states |ψ0〉 and |ψ1〉 at two times t0, t1 then the two states are related

with a unitary transformation, i.e, |ψ0〉 = U |ψ1〉 where U is a unitary transformation.

14

2. Similarly, if a quantum system is in two density operators ρ0 and ρ1 at two times t0, t1 then ρ1 =

Uρ0U
†.

2.2.5 Superposition and Entanglement

We say that a qubit q is in a superposition state when we can represent its state as linear combination

of the basis of a Hilbert space, i.e, q = α |0〉+ β |1〉.

Example 2. The state |+〉 is a superposition between |0〉 and |1〉, as follows: |+〉 = 1√
2
|0〉+ 1√

2
|1〉

In a system with many qubits, if we cannot describe the state of a qubit separated from others, we

call this phenomenon ”Entanglement”.

Example 3. the state 1√
2
|00〉+ 1√

2
|11〉 indicates that qubits , when observed, will be in the same state

with equal probabilities.

2.2.6 Measurement

Once the state of a quantum system is measured once, it is going to be destroyed. Let the possible

outcomes of a measurement be {mi}i∈I . Then for every outcome, there is an operator Mi called the

measurement operator, satisfying:

∑
i∈IMiMi

† = IH.

Lemma 5. The following assertions are true:

1. If the system was in a pure state |ψ〉, then the probability of the outcome mi appearing is p(mi) =

〈ψ|MiMi
† |ψ〉.

2. If the system state was described with density operators, then if the state before the measure-

ment was ρ then the probability of the outcome mi is p(mi) = tr(Mi
†Miρ) and the state after the

measurement will be ρi = MiρMi
†√

p(mi)
.

3. The possible outcomes of one qubit are {m0,m1}.

Example 4. In a system of one qubit, assume that the measurement is done on basis |0〉 , |1〉, then

M0 = |0〉 〈0| and M1 = |1〉 〈1| are measurement operators for the system, because:

M0.M
†
0 +M1.M

†
1 = |0〉 〈0| (|0〉 〈0|)† + |1〉 〈1| (|1〉 〈1|)†

=

1 0

0 0

+

0 0

0 1

 = I

15

2.3 Quantum Circuit Model

Deutsch has suggested the circuit model of quantum programs [8]. In this model, quantum circuits are

implemented using wires, gates, controlled gates, and measurement gates. Wires are of two types:

quantum wires, which carry qubits, and classical wires for classical bits. A quantum machine is re-

sponsible, in particular, for executing the circuit, measuring the results then dispatching it to a classical

computer. Knill in [17] has shown that this model is not able to execute some quantum algorithms.

2.3.1 Quantum gates

Quantum gates are Unitary transformations that take qubits as inputs and output the resulted quantum

state. To help visually understand those transformations, we will show them on Bloch Sphere. The most

common quantum gates are:

1. Hadamard Gate H: a single-qubit gate that maps |0〉 to |0〉+|1〉2 or |+〉 and |1〉 to |0〉−|1〉2 or |−〉.

H =
1√
2

(
1 1
1 −1

)

It is easy to prove that H is unitary.

2. Pauli Gates: three single-qubit gates, X, Y and Z.

(a) X-Gate: works as the logical Not-Gate, as it maps |0〉 to |1〉 and |1〉 to |0〉. Its matrix is

X =

(
0 1
1 0

)

(b) Y-Gate: It maps |0〉 to i |1〉 and |1〉 to −i |0〉 and its matrix is

Y =

(
0 −i
i 0

)

(c) Z-Gate: It does not change |0〉 but maps |1〉 to − |1〉 and its matrix is

Z =

(
1 0
0 −1

)

3. Phase Shift gates: single-qubit of the form Rθ, where θ is the rotation angle; they do not change

|0〉 but map |1〉 to eiθ |1〉 t. Its matricial form is

Rθ =

(
1 0
0 eiθ

)

4. Controlled Gates: these act on two or more qubits and there are many examples of such gates:

16

Figure 2.1: Bell State

(a) Controlled Not Gate: it maps |a〉 |b〉 (or |ab〉) to |a, a⊕ b〉, we call |a〉 the control qubit. The

matrix (for two qubits in basis {|0〉 , |1〉}) is

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(b) Swap Gate : it swaps two qubits, i.e., it maps |xy〉 to |yx〉. The matrix (for two qubits in basis

{|0〉 , |1〉}) is

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

(c) Controlled U Gate: applies the unitary transformation U on the second qubit if the value of

the first qubit is |1〉. The matrix (for two qubits in basis {|0〉 , |1〉}) is

cU =

1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22

that maps |xy〉 to |x, x⊕ Uy〉

Gates can be composed in circuits. For instance, Figure Figure 2.1 shows the Bell state, which is a

very important component of many algorithms that can be written as transition:

|00〉 → (|0〉+|1〉√
2

) |0〉 = 1√
2
(|00〉+ |10〉)→ 1√

2
(|0(0⊗ 0)〉+ |1(1⊗ 0)〉)→ 1√

2
(|00〉+ |11〉)

The final state is referred as the EPR state (Einstein, Podolsky and Rosen state).

17

2.3.2 Quantum Oracles

A quantum oracle O is a black box operation that is performed over two or more qubits and executes a

classical function f : {0, 1}n → {0, 1}m. For all x ∈ {0, 1}n and y ∈ {0, 1}m we have

O(|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f(x)〉

Oracles play an essential role in the Deutsch-Jozsa Algorithm as well as in the Grover Algorithm, as

shown in the following sections.

2.4 Some Quantum Algorithms

In this section, we list some of the most famous quantum algorithms that solve some real-world problems,

and we discuss the correctness of some of them.

2.4.1 Overview

Programs that take advantage of quantum properties like entanglement, superposition, unitary transfor-

mations and measurement, can provide a polynomial or an exponential boosting to solve some prob-

lems. For instance, Grover’s algorithm improves searching in an unstructured dataset quadratically (it

finds the solution in O(
√
N) iterations). In this section, we show some examples of quantum algorithms

and their temporal complexity.

2.4.2 Quantum Teleportation

It is not possible to copy the state of a qubit at a time, as stated by the theorem of no-cloning:

Lemma 6. There is no operator U that satisfies the predicate: U |a〉 |0〉 = |a〉 |a〉.

Proof. We write |a〉 = α |0〉+ β |1〉, then

|a〉 |0〉 = α |0〉 |0〉+ β |1〉 |0〉

and

|a〉 |a〉 = α2 |0〉 |0〉+ αβ |0〉 |1〉+ βα |1〉 |0〉+ β2 |1〉 |1〉

We notice that some terms are absent in the first equation, which proves the inexistence of any U .

However, it is possible to transfer the state of a qubit to another one, using the Quantum Teleportation

algorithm, proposed by Bennett et al in [18]. Figure Figure 2.2 illustrates the attempt to teleport the state

18

Figure 2.2: Quantum Teleportation Algorithm

of q0 to q2, where the qubit q1 is a mediator.

We notice that there are four phases. The qubit q0 is destroyed in Phase 3 (because of the effect of

measurement). Phase 4 in the figure is a special case when q1 and q2 both measure to 1. The general

case is as the following:

1. If q0 measures to 0 and q1 measures to 0 then do nothing.

2. If q0 measures to 0 and q1 measures to 1 then apply X gate.

3. If q0 measures to 1 and q1 measures to 0 then apply Z gate.

4. If q0 measures to 1 and q1 measures to 1 then apply Z gate then apply X gate.

In the end, we expect that the state of q2 is the same as q1 before starting Phase 1.

2.4.3 Grover’s Algorithm

Assume that given a set of N items, one of them, ω, has a property that makes it distinguished. The

problem is to find ω, which could be done with classical computation with an exhaustive search of a

complexity O(N). Grover has developed a quantum algorithm that achieves a quadratic speedup for this

search [19]. First, we define the oracle of that represents the set

Uω |x〉 =

{
− |x〉 , if x = ω

|x〉 , otherwise

This makes it a diagonal matrix of the form diag({(−1)f(2i−1)}0≤i<n).

Second, the algorithm starts with a guess, by applying a superposition on all the qubits:

|s〉 = 1√
N

∑n−1
0 |x〉

19

Figure 2.3: Grover Algorithm

Then, an iterative process called Amplitude Amplification is applied on this register, aiming to signifi-

cantly enhance the probability of |s〉 landing on |ω〉, and it iterates over three steps:

Step-1: applying uniform superposition |s〉 = H⊗n |0〉n.

Step-2: applying the oracle which work as a reflection around |ω〉 : Uω: |s〉 = Uω |s〉.

Step-3: applying another reflection around |s〉: |s〉 = Us |x〉.

After k steps, it reaches the state |sk〉 = (UsUω)k |s〉. It was proven that the search will reach ω when

k →
√
N .

Mathematical Proof. Considering a space with the span {|s〉 , |w〉}, then by the relations written above

we can see that:

Uω |s〉 = (I − 2 |ω〉 〈ω|) |s〉 = |s〉 − 2√
N
|ω〉 Uω |ω〉 = (I − 2 |ω〉 〈ω|) |ω〉 = 0. |s〉 − |ω〉

So we can define Uω as a transformation

ψ → [|s〉 |ω〉]
[
−1 − 2√

n

0 1

] [
p
q

]

where ψ is linear combination of the basis {|s〉 , |w〉}, i.e, ψ = p |s〉+ q |w〉. Similarly, we can find that Us

is a also a transformation where ψ →
[
−1 0
2√
n

1

]
ψ.

This makes UsUω, which is applied in every iteration of Grover’s algorithm, equal to

[
1 2√

n

− 2√
n

1− 4
N

]
.

Then we can diagonalize the resulted matrix to obtain:

UsUω = M.

[
e

2i.arcsin(1√
N

)
0

0 e
−2i.arcsin(1√

N
)

]
.M−1

20

where

M =

[−i i

e
i.arcsin(1√

N
)

e
−i.arcsin(1√

N
)

]
The probability of reaching |ω〉 after k iterations is given by

||〈ω|ψk〉||2 = || 〈ω|
[
|s〉 |ω〉

]
(UsUω)k

[
p
q

]
||2

= ||
[
〈ω|s〉 〈ω|ω〉

]
(UsUω)k

[
p
q

]
||2

= ||
[

1√
N

1
]
M.

[
e
i.k.arcsin(1√

N
)

0

0 e
−i.k.arcsin(1√

N
)

]
.M−1

[
p
q

]
||2

= sin((2k + 1)arcsin(
1√
N

))2

which is approximately 1 when k = π
√
N

4 , so the search will be accomplished in O(
√
N) iterations.

2.4.4 Deutsch-Josza Algorithm

David Deutsch and Richard Jozsa proposed a quantum algorithm to solve the following problem [20]:

Given a function f : {0, 1}n → {0, 1}, f is either constant, i.e,

∀x ∈ {0, 1}n, f(x) = 0 or f(x) = 1

or it is balanced, i.e.,

#{x ∈ {0, 1}n : f(x) = 0} = #{x ∈ {0, 1}n : f(x) = 1}

Determine whether f is constant or balanced using its oracle.

The function f is implemented in an oracle Uf , where it receives two inputs, x ∈ {0, 1}n and y ∈ {0, 1}

and it outputs the following:

Uf |x〉 |y〉 = |x, y ⊕ f(x)〉

The qubit |y〉 will be initialized to |1〉, so the the second output will be 1 − f(x). The algorithm is

described with the quantum circuit in Figure Figure 2.4.

The measurement in the end of the circuit will output 1 if the function is balanced, and 0 if it is

constant.

21

Figure 2.4: Deutsh-Josza Algorithm (Source: Wikipedia)

Correctness. We can track the state ψ of the quantum system to prove the correctness of this algo-

rithm. Starting from ψ0, i.e at the time of initialization, it will be:

ψ0 = (⊗i<n |0〉)⊗ |1〉

The next state, ψ1 comes after a Hadamard transformation over the whole system giving:

ψ1 = (⊗i<nH |0〉)⊗H |1〉

=
1

√
2
n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

Then, the oracle of f will be applied, resulting in the state ψ2:

ψ2 =
1

√
2
n+1

2n−1∑
x=0

|x〉 (|f(x)〉 − |1⊕ f(x)〉)

=
1

√
2
n+1

2n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉)

The last qubit is ignored, which leaves the state ψ2 in the following form:

ψ2 =
1
√

2
n

2n−1∑
x=0

(−1)f(x) |x〉

22

Another Hadamard transformation is applied on the system, giving the state ψ3:

ψ3 =
1
√

2
n

2n−1∑
x=0

(−1)f(x)(
1
√

2
n

2n−1∑
y=0

(−1)x.y |y〉)

=
1

2n

2n−1∑
y=0

(

2n−1∑
x=0

(−1)f(x)+x.y) |y〉

where x.y = ⊕n−1
i=0 xiyi. The probability of measuring |0〉n in the end, is

| 1
2n

∑2n−1
x=0 (−1)f(x)|2

which is 0 if f is balanced, or 1 if it is constant, or, if the circuit measures to |0〉n, it means that the

function is constant, and balanced otherwise.

2.5 Quantum Programming Languages and Frameworks

Many players on the quantum field have introduced their own tools and frameworks to develop quantum

programs. In this section, we will list some of those.

2.5.1 OpenQasm

Released by IBM in 2017, OpenQasm 2. is an intermediate quantum instructions representation, de-

signed as a low level processor language, analogous to assembly for classical hardware, but in this case

it is used to describe quantum circuits.

In OpenQasm, it is possible to define bits, qubits, to apply a variety of gates, and to measure qubits. It

also allows if and while statements. The program in Listing Listing 2.1 is an implementation of quantum

teleportation in OpenQasm (the explanation of quantum teleportation is done in Section Section 2.4.2).

Listing 2.1: Quantum teleportation in OpenQasm

OPENQASM 3;

include "stdgates.inc";

qubit [3] q;

bit c0;

bit c1;

bit c2;

gate post q { }

2https://qiskit.github.io/openqasm/

23

reset q;

U(0.3, 0.2, 0.1) q[0];

h q[1];

cx q[1], q[2];

barrier q;

cx q[0], q[1];

h q[0];

c0 = measure q[0];

c1 = measure q[1];

if(c0==1) z q[2];

if(c1==1) x q[2];

post q[2];

c2 = measure q[2];

2.5.2 Qiskit

Qiskit 3 is an SDK designed by IBM to design quantum circuits and transformations in Python, and

then run them either locally (using a simulator) or on IBM Quantum experience backend (via a web

service). Qiskit allows to design a circuit with quantum and classical wires, applying gates sequentially,

and measuring states. We can also use the syntax of Python to make conditional statements or loops.

Listing Listing 2.2 shows the algorithm of quantum teleportation in Qiskit.

Listing 2.2: Quantum teleportation in Qiskit

from qiskit import QuantumCircuit , Aer , execute

qc = QuantumCircuit (3, 3)

qc.h(0)

qc.cx(0, 1)

qc.cx(1, 2)

qc.measure ([0,1,2], [0,1,2])

backend = Aer.get_backend("qasm_simulator")

3https://qiskit.org/documentation/

24

job = execute(qc , backend)

result = job.result ()

print(result.get_counts(qc))

The framework offers some useful functionalities like drawing circuits, calculating states like density

matrix or vector state, and visualizing the results of the execution.

2.5.3 Q#

Developed by Microsoft for its Quantum Development Kit (QDK) 4 , Q# is a high level, domain-specific

language to design quantum programs and focus on the algorithmic level. In addition to supporting

qubits and gates, it allows for loops, defining functions (including lambda functions), modules and many

classical data types like Strings, Integers, Doubles and Booleans. The example in Listing Listing 2.3 is

the code for quantum teleportation in Q#.

Listing 2.3: Quantum teleportation in Q#

operation Teleport (msg : Qubit , target : Qubit) : Unit {

use register = Qubit ();

H(register);

CNOT(register , target);

CNOT(msg , register);

H(msg);

if (IsResultOne(MResetZ(register))) { X(target); }

}

2.5.4 Cirq

Google has developed a Python library 5 to write, manipulate and optimize quantum circuits, and it was

provided with a mechanism to mitigate quantum noise in current quantum computers. Like the previous

languages, it is possible to initialize qubits, applying gates, measuring and executing conditional and loop

4https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
5https://quantumai.google/cirq

25

statements (using Python’s syntax), In addition to the ability to execute the code on Google Quantum

Backend. The code in Listing Listing 2.4 is a Cirq implementation of quantum teleportation.

Listing 2.4: Quantum teleportation in Cirq

import cirq

circuit = cirq.Circuit ()

m = cirq.NamedQubit("m")

a = cirq.NamedQubit("a")

b = cirq.NamedQubit("b")

circuit.append(gate(b))

circuit.append ([cirq.H(a), cirq.CNOT(a, b)])

circuit.append ([cirq.CNOT(m, a), cirq.H(m), cirq.measure(m, a)])

circuit.append ([cirq.CNOT(a, b), cirq.CZ(m, b)])

2.5.5 Silq

Silq 6, developed by SRI Lab in ETH Zurich, is a high level quantum programming langauge that provides

a string static type system [21] and can run the traditional quantum operations, conditions and loops. The

Type system of Silq uses Uncomputation to help preventing some errors like consuming used variables

or implicit measurements.

Listing 2.5: Quantum teleportation in Silq

def main() {

return Teleportation ();

}

def Teleportation (){

m := 0:B;

6https://silq.ethz.ch/overview

26

a := 0:B;

b := 0:B;

m := 1/3;

a := H(a);

b := cx(a, b);

a := cx(m,a);

m := H(m);

m := measure(m);

a := measure(a);

if m==1 {

if a==1{

b := X(b);

b := Z(b);

}

else{

b := X(b);

}

}

else {

if a==1 {

b := X(b);

}

}

b := measure(b);

}

27

28

3
Survey: Hoare Logics for Quantum

Programs

Contents

3.1 Chadha, Mateus and Sernadas’s EEQPL . 31

3.2 Yoshihiko Kakutani’s QHL . 32

3.3 Mingsheng Ying’s qPD . 33

3.4 Feng-Ying Hoare Logic . 35

29

30

In this chapter, we list four different examples of Hoare logics that can be used to reason about quan-

tum programs, and we compare them in terms of language expressiveness, soundness, completeness,

and the ability to apply them to programs that require reasoning about classical states.

3.1 Chadha, Mateus and Sernadas’s EEQPL

In [5], Chadha, Mateus and Sernadas extend their EEPL (a complete logic to reason on probabilistic pro-

grams) to EEQPL, with the ability to reason about quantum programs. The language contains classical

and quantum instructions, with the following syntax:

c := skip | b := b | n := e | I | H : q | H : qn | σx : q | σx : q(e, e) | S(e, b) : q | S(e, e) : qn | UU

| qif q then U else U | qcase qn : 0 : U, ..., n− 1 : U | b :m= qn | n :m= qn | c; c

if b then c else c | case n : 0 : c, ..., n− 1 : c | n repeat c

As we can see, the language uses four types of data: bits b, natural numbers n, qubits q, and qunits

qn. Qunits are the natural numbers’ equivalent for qubits. The quantum operations are H for Hadamard

Gate and it could be applied on qubits or qunits, σx is the NOT gate, S is a Phase shifting gate with two

arguments, and :m= refers to measuring operation. Expressions e are defined by the authors to include

Real numbers, Complex numbers, and bra-kets expressions. Note that the language lacks while loops.

3.1.1 EEQPL rules

Here are some of the rules for EEQPL:

Skip
{P}skip{P}

Asgn
{P [b→ b]}b := b{P}

Unit
{P [〈u1|u2〉 → 〈U.u1|u2〉]}U{P}

Seq
{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

Cons
P ′ → P {P}c{Q} Q→ Q′

{P ′}c{Q′}

Meas
{P [E(r)→ mb,q

1 E(r) +mb,q
0 E(r)]}b :m= q{P}

31

If
{P1}c1; b := true{Q1} {P2}c2; b := false{Q2}

{(P1/b ∧ (P2/¬b))}if b then c1 else c2{(Q1/b ∧ (Q2/¬b))}

Note that P/b is the logical value of P after substituting b with true, and E(r) is the real expectation of

satisfaction of P upon measurement.

The logic is proven to be sound, but not complete [5], and the authors used the rules to prove the

correctness of the Deutsch Algorithm.

3.2 Yoshihiko Kakutani’s QHL

In [22], Selinger designs a simple, well-defined functional quantum language called QPL, with the fol-

lowing Syntax:

c := skip | c ; c | bit b | qbit q | discard q | b := 0 | b := 1 |

q ∗ = U | if b then c else c | while b do c | measure q then c else c

Note that discard could be applied on bits or qubits.

The language does not have a global state, but instead, Kakutani’s [6] uses its denotational semantics

as functions of matrices to define a Quantum Hoare Logic QHL over QPL, but only with measurement

and while loops and no recursive functions.

Assertions in QHL could be First Order Logic predicates over real numbers, or Density matrices, adding/dis-

carding qubits or bits, or applying unitary transformations impact the density matrix.

3.2.1 QHL rules

Many of the following rules are standard as we can see in the following annotation:

Skip
{P}skip{P}

Seq
{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

Asgn0
{P}b := 0{|1〉 〈0|P + |1〉 〈1|P}

Asgn1
{P}b := 1{|1〉 〈0|P + |1〉 〈1|P}

Init− b
{P ∧ P [t] = 1}bit b{P ∧ P [b = 0] = 1}

Init− q
{P ∧ P [t] = 1}qbit q{P ∧ P [b = 0] = 1}

Unit
{U†P}q∗ = U{P}

32

Discard
b 6∈ vars(P)

{P}discard b{P}

Cons
P ′ → P {P}c{Q} Q→ Q′

{P ′}c{Q′}

If
{|1〉 〈0|P}c1{Q1} {|1〉 〈1|P}c2{Q2}
{P}if b then c1 else c2{(Q1 +Q2}

Meas
{|1〉 〈0|P}c1{Q1} {|1〉 〈1|P}c2{Q2}

{P}measure q then c1 else c2{(Q1 +Q2}

While
{|1〉 〈0|Pn}c{Pn+1}∀n ∈ N {|1〉 〈0|Pn|n ∈ N} |= Q

{P}while b do c{(Q}

There are more rules for the other variants of Assertions like linearity or existentials, but it is necessary

to highlight on the While rule, as it is not very standard in this logic, because it does not reason about

an invariant but it only says that the if the matrix of the last state Pn implies Q and the loop terminates

then the triple is correct, which is not very useful. The paper suggests an invariant-based While rule with

some conditions, like guaranteeing that the program is going to terminate, and that Pi cannot contain

any negation, disjunction or existentials. Even with this rule, there is no claim (and yet a proof), that the

logic is complete. However, it was used to prove the correctness of Deutsch and Shor’s algorithms in [6],

and to prove the security of Quantum Cryptography Protocols in [23].

3.3 Mingsheng Ying’s qPD

Ying introduced qPD [7], a complete Hoare logic, that uses D’Hondt and Panangaden’s quantum pred-

icates [24] and a syntax similar to QPL (Selinger [22]). qPD only deals with quantum variables, and it

can represent integers using infinite Hilbert space H∞ and booleans with binary Hilbert space H2.

The syntax is defined by Ying [7] as the following:

S ::= skip | q := 0 | qn := 0 | q∗ = U | S1;S2 | measure M [q] : S | while M [q] do S end

The program state is the density operator that represents the mixed quantum state of the variables, and

assertions (as defined in [24]) are positive Hermitian operators with a maximum eigenvalue less than 1.

Definition 14. The denotational semantics of a program c indicates the states in which a program might

terminate starting from a given state, and is defined as the following:

[[c]](ρ) =
∑
{ρ′ : 〈c, ρ〉 −→ ∗〈skip, ρ′〉}

Lemma 7. A program c terminates when tr(ρ) = tr([[c]](ρ)).

33

The Hoare triple of the form {P}c{Q} is totally satisfied, or |=tot {P}c{Q}, iff

∀ρ, tr(Pρ) ≤ tr(Q[[c]]ρ)

The same triple is partially satisfied iff

∀ρ, tr(Pρ) ≤ tr(Q[[c]](ρ)) + tr(ρ)− tr([[c]](ρ))

The term tr(ρ)− tr([[c]](ρ)) represents the probability that the program terminates.

3.3.1 qPD rules

First, the set of Quantum predicates is ordered with respect to Lowner partial order, i.e, we say that

P v Q iff ∀ρ, tr(Pρ) ≤ tr(Qρ). This definition is helpful for some of the following rules:

Skip
{P}skip{P}

Seq
{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

AsgnB
{
∑
n∈{0,1} |n〉 〈0|P |0〉 〈n|}q := 0{P}

AsgnN
{
∑∞
n=−∞ |n〉 〈0|P |0〉 〈n|}qn := 0{P}

AsgnN
{
∑∞
n=−∞ |n〉 〈0|P |0〉 〈n|}qn := 0{P}

Unit
{U†PU}q∗ = U{R}

Cons
P ′ v P {P}c{Q} Q v Q′

{P ′}c{Q′}

Meas
∀m, {Pm}cm{Q}

{
∑
mM

†
mPMm}measure M [q] : c{Q}

While
{Q}cm{M†0PM0 +M†1QM1}

{M†0PM0 +M†1QM1}while M [q] do c{P}

As stated before, this system was proven (by Ying [7]) to be sound and complete, i.e any triple

{P}c{Q} is derivable using qPD. There is also a total correctness version with a different While rule,

that was also proven to be sound and correct.

34

3.4 Feng-Ying Hoare Logic

Feng and Ying [1] addressed the problem of handling classical variables along with quantum variables.

A simple “While” language was developed over an extension of qPD Section 3.3.1, and the operational

semantics was extended to use a new definition of a “State”. Like states, Feng and Ying also redefined

assertions to combine variables and quantum statements. The new concepts of States and Assertions

are going to be further discussed later in Definition 16. Briefly, a quantum-classical state is a function

that maps each state of the classical variables to a respective partial density operator over the quantum

variables of the system. Moreover, a quantum-classical assertion is a function between assertions over

classical variables to a density operator. The table Table 3.1 compares between classical, probabilistic,

quantum and quantum classical with respect to the definition of “State”, “Assertion” and “Satisfaction”.

Classical Probabilistic Quantum Quantum-Classical
State σ ∈ Σ µ ∈ Σ→ [0, 1] ρ ∈ DH ∆ ∈ Σ→ D(H)
Assertion p ∈ Σ→ {0, 1} f ∈ Σ→ [0, 1] M ∈ P(H) Θ ∈ Σ→ P(H)
Satisfaction σ| = p

∑
σ∈Dom(µ) µ(σ)f(σ) tr(Mρ)

∑
σ∈Σ tr(∆(σ)Θ(σ))

Table 3.1: Comparison between different types of languages [1]

In qPD, the expectation of satisfaction is the probabilty that a state satisfies an assertion, and it was

given by the formula:

Exp(σ |= θ) = tr(σ.θ)

While in the Quantum-classical state, we generalize the previous formula as follows:

Exp(∆ |= Θ) =
∑
σ∈d∆e

tr([Θ(σ)⊗ IHV
].∆(σ))

where d∆e is the image set of ∆, and HV is the Hilbert space of the state’s quantum variables.

Lemma 8. Let ΣV be the set of all quantum classical states over the variables set V , and AW be the

set of all quantum classical assertions over the variables set W . If W is a subset of V then for any state

∆ ∈ ±V , quantum classical assertion Θ ∈ AW , and classical assertion p:

1. Exp(∆ |= Θ) ∈ [0, 1]

2. Exp(
∑
i λi∆i |= Θ) =

∑
i λiExp(∆i |= Θ)

3. Exp(∆ |=
∑
i λiΘ) =

∑
i λiExp(∆ |= Θi)

4. Exp(∆i|p |= Θ) = Exp(∆) |= p∧Θ) where ∆i|p is the quantum classical state of the set of classical

states of ∆ that satisfy p.

35

Consider x, a classical variable, q, a quantum variable, e, an expression, g, a function that maps

values to probabilities, U , a unitary transformation, and M , the basis of the Hilbert space of quantum

variables. Feng and Ying [1] define a program S using the following syntax:

S ::= skip |abort | q := 0 | q∗ = U | S1;S2 | x := e | x :=$ g | x := measM[q] | while M [q] do S end

we can see that a new instruction x :=$ g has been introduced. It means that the classical variable x

is assigned to a probabilistic distribution of values.

The authors of [1] did also define the operational and dentational semantics of each one of the previous

instructions. where they denoted [[S]](σ) to be the set of all quantum classical states the a program S can

produce after reducing it to the empty program E. They used the dentational semantics later to define

Hoare triples as the following:

Definition 15. The formula {P}S{Q} is totally correct, and we write |=tot {P}S{Q} , if for any V,∆ :

qv(P, S,Q) 6⊆ V and ∆ ∈ SV :

Exp(∆ |= P) ≤ Exp([[S]](∆) |= Q)

3.4.1 Feng-Ying Logic rules

Consider Θ a quantum-classical assertion, and qV ar(Θ) is the set of quantum variables in the assertion

Θ. using the definition in Definition 15, Feng and Ying developed a proof system from the following rules:

Skip{Θ}skip{Θ}

AssnΘ[e/x]}x := e{Θ}

Rassn
∑

d∈Dtype(x)

g(d).Θ[d/x]}x :=$ g{Θ}

Init
q ∈ qV ar(Θ)

{
∑dq−1
i=0 |0〉q 〈i|Θ |i〉q 〈0|}q := 0{Θ}

Unit
q ⊆ qV ar(Θ)

{U†Θ[i/x]U}q = Uq{Θ}

Meas
q ∈ qV ar(Θ)

{
∑
i∈JM

†
i Θ[i/x]Mi}x =: measM[q]{Θ}

Seq
{Θ}S1{Θ′} and {Θ′}S2{Θ′′}

{Θ}S1;S2{Θ′′}

While
∀m, {Pm}cm{Q}

{
∑
mM

†
mPMm}measure M [q] : c{Q}

36

Imp
Θ ≤ Θ′ ∧ {Θ′}S{Ψ′} ∧Ψ′ ≤ Ψ

{Θ}S{Ψ}

The term Θ[e/x] represents a state update where the variable x is substituted with the value e in all

occurrences in Θ.

Feng and Ying [1] proved that the system in the previous table is sound and complete with respect

to partial and total correctness of quantum classical programs, using the notation of Weakest Liberal

Precondition, or wlp that is inspired from the similar concept for probabilistic programs in [25].

37

38

4
A Verified Quantum Programming

Language with Hybrid Variables

Contents

4.1 Syntax . 41

4.2 Variables and Types . 42

4.3 Quantum-Classical State . 42

4.4 Quantum-Classical Assertions . 43

4.5 State Update and Semantics . 44

4.6 A Hoare Logic for Quantum-Classical Programs . 47

4.7 A Use Case: Quantum Teleportation . 50

39

40

In this chapter, we are going to present the language described in [1], its syntax, operational seman-

tics and a proof system, with some changes that we added to it, to be implemented later in Chapter 5.

4.1 Syntax

We slightly changed the language defined by Feng and Ying in [1], to come up with the following syntax:

S ::= skip | x := e | x := meas n | new qubit |

q n ∗ = U | S0;S1 | if b then S1 else S0 end | while b do S end

In the following, we list the differences with the language in [1]:

• We removed the command that assigns a classical variable to a probabilistic distribution, because

we did not find it relevant to the problem.

• It is possible to initialize/measure only one qubit at a time.

• It is possible to apply a Unitary transformation on one qubit (or two adjacent qubit in case of a

CNOT gate).

• We uses indices as IDs for the quantum variables.

The main shortcomings of this language is its lack of expressiveness, as it initializes one qubit at a time

and allows applying unitary transformations on a limited number of qubits, to serve a purpose of proving

the concept of the possibility to reason about such programs. It would still be an interesting open point

for the future to extend the language and make it more expressive. The following definitions show the

expressions and gates that could be used in our language:

U ::= X | Y | Z | I | H | CNOT

e ::= Xid | n | e+ e | e− e | e× e | e/e : e 6= 0

b ::= true | false | b ∧ b | b ∨ b | ¬b | e == e | e <= e | e < e

Here, Xid refers to an identifier to classical variable.

Example 5 shows a program written in our language.

Example 5.

new qubit; new qubit; q 0 ∗ = H;x := meas 0; if x == 0 then q 1 ∗ = X else skip end; y := meas 1

This program uses two qubits in the |0〉 state, applies the Hadamard gate H to the first one, then

measures it, and if the outcome of the measurement is 0, then it applies the Not gate X to the second

qubit, otherwise it skips, then it measures the second qubit, stores the result in y and ends the program.

41

We decided to use indices to represent qubits to ease the calculation of Density operators when we

reason about assertions with different quantum variables or when we apply gates with two entries like

Controlled Not (CNOT).

4.2 Variables and Types

In our language, we consider two types of variables: classical variables with boolean or natural values,

hence the domain of those variables is D = DBoolean ∪DNatural; and quantum variables, or qubits. The

set of quantum variables q of a program is associated with a Hilbert Space Hq = ⊗Hq; this set is always

finite.

4.3 Quantum-Classical State

Adapted from the definition of Feng and Ying [1], the state of a program written in our language consists

of elements to represent the classical part and the corresponding quantum probabilistic distribution of

possible measurement outcomes. We use Σ to denote the set of all states of the classical variables in a

program.

Definition 16. A Quantum-Classical State, or shortly a cq-state, is defined as following:

∆ = {(σ, ρ), where σ ∈ Σ, ρ ∈ D(H)} (4.1)

where Σ is the set of all classical states, i.e, a mapping between classical variables identifiers and values,

and D(H) is the set of all partial density operators. ∆ should be countable.

In plain words, the state is a countable set of pairs of key-value combinations that represent current

values of classical variables, and the corresponding density matrix of the quantum variables.

Looking at Example 5, we expect the program to end up with the following state:

{(x→ 0, y → 0)→ ρ00, (x→ 0, y → 1)→ ρ01,

(x→ 1, y → 0)→ ρ10, (x→ 1, y → 1)→ ρ11}

where

ρ00 = (|0〉 〈0| ⊗ I)(X ⊗ I)(I ⊗ |0〉 〈0|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |0〉 〈0|)†(X ⊗ I)†(|0〉 〈0| ⊗ I)†

ρ01 = (|1〉 〈1| ⊗ I)(X ⊗ I)(I ⊗ |0〉 〈0|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |0〉 〈0|)†(X ⊗ I)†(|1〉 〈1| ⊗ I)†

42

ρ10 = (|0〉 〈0| ⊗ I)(I ⊗ |1〉 〈1|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |1〉 〈1|)†(|0〉 〈0| ⊗ I)†

ρ11 = (|1〉 〈1| ⊗ I)(I ⊗ |1〉 〈1|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |1〉 〈1|)†(|1〉 〈1| ⊗ I)†

And we will show later that the probabilistic distribution of the results is going to be:

{(x→ 0, y → 0)→ 0, (x→ 0, y → 1)→ 0.5, (x→ 1, y → 0)→ 0.5, (x→ 1, y → 1)→ 0}

4.4 Quantum-Classical Assertions

We recall the set P(H) to be the set of all Density operators whose eigenvalues are in the interval [0, 1].

Assertions in classical programs are First-order logic statements that could be tested against the pro-

gram state, while in Quantum programs, In [24], D’hondt et al defined a Quantum state to be a Density

operators in PH. In Quantum-classical programs, the state of Classical variables is mapped to the cor-

responding state the quantum registers system before measurement. This is similar to what is usually

done for probabilistic programs.

Definition 17. A quantum-classical assertion is defined as the following:

ψ : FOP(V)→ PH

where FOP(V) stands for the set of First-order logic statements on the set of classical variables V .

To ease the calculations, we consider that the default value of P (σ) is 0 for all σ ∈ Σ, if not indicated

otherwise.

Example 6. (X mod 2 = 0, |00〉 〈00|) is an example of a Quantum-Classical assertion.

Another contribution from Feng and Ying was defining the degree of satisfaction of a certain Quantum-

Classical assertion by a Quantum-Classical state. We adapted in our definitions to be as following:

Definition 18. Let ∆cq be a Quantum-Classical state defined as in Definition Definition 16, and let Ψcq

be a Quantum-Classical assertion as defined above. Then we say that ∆cq is expected to satisfy Ψcq

with a degree:

Exp(∆cq |= Ψcq) =
∑

σ∈∆cq∧σ1|=Ψcq(σ0)

tr(σ2.(Ψcq(σ1)⊗ IHV
)) (4.2)

Here, HV refers to the set of quantum variables in Ψcq but not in ∆cq.

The Expectation in the previous definition only adds up states whose classical part satisfies the

classical part of the assertion, because it is iterating over a countable set.

The following examples illustrate the calculation of the expectation of an assertion.

43

Example 7. Considering the state ∆

{(X → 2)→ 0.5 |+〉 〈+| , (X → 4)→ 0.5 |−〉 〈−|)}

and the assertion Ψ

(X ≤ 3, 1)

then the expectation of ∆ |= Ψ is given by:

Exp(∆ |= Ψ) = trace(0.5 |+〉 〈+| .I) = 0.5

This is because the proposition X ≤ 3 is satisfied when X → 2.

Definition 19. We say that an assertion Ψ1 is weaker than an assertion Ψ2 iff

Exp(∆ |= Ψ1) ≤ Exp(∆ |= Ψ2)

for all Quantum-Classical states ∆.

Example 8. Let Ψ1,Ψ2 be two assertions where:

Ψ1 = (x ≤ 3, 0.5) and Ψ2 = (x ≤ 5, 0.5)

Knowing that for any classical state σ, we have σ |= Ψ11 =⇒ σ |= Ψ21 and Ψ12 = Ψ22, then, for all

states ∆:

Exp(∆ |= Ψ1) =
∑

(σ,ρ)∈∆,σ|=Ψ11

trace(ρ.Ψ12) ≤
∑

(σ,ρ)∈∆,σ|=Ψ21

trace(ρ.Ψ22) = Exp(∆ |= Ψ2)

Hence, Ψ1 is weaker than Ψ2.

This definition allows us to construct a complete partial order set of Quantum-Classical assertions

as mentioned before and proved by Feng and Ying [1].

4.5 State Update and Semantics

Definition 20. The triple (Prog0 → Prog1, σ0 → σ1, ρ0 → ρ1) represents the transition of the program

Prog0 to Prog1 and the implied change of both classical and quantum parts of the state.

Let dim be the dimension of the quantum system, i.e, the number of qubits in the system, and let E

be the notation for an empty program. The following rules are state updating rules:

44

1. (skip→ E, σ → σ, ρ→ ρ)

2. (x := e→ E, σ → {σ, x→ e}, ρ→ ρ)

3. (new qubit→ E, σ → σ, ρ→ |0〉 ⊗ ρ⊗ 〈0|)

4. (q n ∗ = U → E, σ → σ, ρ→ padding(U, n).ρ.padding(U, n)†)

5. (x := meas n→ E, σ → {σ[x/0]}, ρ→M0(n).ρ.M0(n)†)

6. (x := meas n→ E, σ → {σ[x/1]}, ρ→M1(n).ρ.M1(n)†)

7. if (S1 → S′1, σ1 → σ′1, ρ1 → ρ′1) then (S1;S2→ S1′;S2, σ1 → σ′1, ρ1 → ρ′1).

8. if σ |= b then ((if b then S1 else S2)→ S1, σ → σ, ρ→ ρ), otherwise, then

((if b then S1 else S2)→ S2, σ → σ, ρ→ ρ).

9. if σ |= b then ((while b do S end) → (S; while b do S end), σ → σ, ρ → ρ), otherwise,

((while b do S end)→ E, σ → σ, ρ→ ρ).

The functions padding, M0 and M1 are used to manipulate the density matrix of the system, and they

are defined as follows:

padding(U, n) = (⊗n−1
i=0 I)⊗ U ⊗ (⊗dimi=n+dim(U)I) (4.3)

padding is used to apply the gate U only on the intended qubit, leaving the others unchanged (by

applying I), and producing a unitary transformation with the same dimensions of the space to make the

multiplication operations in 4 possible.

M0(n) = (⊗n−1
i=0 I)⊗ |0〉 〈0| ⊗ (⊗dimi=n+1I) (4.4)

M1(n) = (⊗n−1
i=0 I)⊗ |1〉 〈1| ⊗ (⊗dimi=n+1I) (4.5)

Similarly, M0(n) and M1(n) give matrices with dimensions of 2dim × 2dim, and upon applying any of

them, let us say M0(n), then the probability of giving 1 when measuring the qubit n again is 0, and vice

versa for M1(n).

Theorem 1. M0(n) and M1(n) are valid measurement operators, or:

∀n ∈ Ndim : M0(n).M0(n)† +M1(n).M1(n)† = I

The state update rules formulate an operational semantics for the language, and it could be used to

evaluate the final state of an execution and judge some assertions over it.

45

Example 9. In the following example, we track the Program/State updates in the program shown in

Example 5:

(new q ; ..., {{} → 1})

The program starts with a mapping that points an empty classical state to 1.

(new q; ..., {{} → ρ0})

where ρ0 = |0〉 〈0|. Upon initializing the first qubit, we realize that the density state updates to ρ0.

(q 0 ∗ = H; ..., {{} → ρ1})

where ρ1 = |0〉 ρ0 〈0| = |00〉 〈00|. We initialize the second qubit, and the density state becomes |00〉 〈00|.

(x:=meas 0; ..., {{} → ρ2})

where ρ2 = (I ⊗H)ρ1(I ⊗H)†.

After applying the Hadamard gate H on the first qubit, the density operator will become ρ2, now we need

to measure it and store the result the classical variable x.

(if x == 0 then q 1 ∗ = H else skip end; ..., {{x→ 0} → ρ30, {x→ 1} → ρ31})

Where ρ30 = M0ρ2M0†, ρ31 = M1ρ2M1†, M0 = (I ⊗ |0〉 〈0|) and M1 = (I ⊗ |1〉 〈1|).

We see the Boolean condition of the if statement is satisfied for some elements of the list of the

Quantum-Classical state, so we apply the instruction q 1 ∗ = X to the state that contains {x → 0}

and the skip instruction to the other states, leaving it unchanged, so the final state after applying the

statement is

(y := meas 1, {{x→ 0} → ρ40, {x→ 1} → ρ31})

where ρ40 = (X ⊗ I)ρ30(X ⊗ I)†.

And now we measure the left qubit, and put the result into y, the final state will look like the following:

(E, {{x→ 0, y → 0} → ρ500
,

{x→ 0, y → 1} → ρ501
,

{x→ 1, y → 0} → ρ510
,

{x→ 1, y → 1} → ρ511
}

46

Where ρ500
= M0ρ40M0†, ρ501

= M1ρ40M1†, ρ510
= M0ρ31M0†, ρ511

= M1ρ31M1†, M0 = (|0〉 〈0| ⊗ I)

and M1 = (|1〉 〈1| ⊗ I).

After simplifying the mathematical expressions, and calculating the traces of the unnormalised density

matrices, we obtain the probabilistic distribution of the possible classical states, as follows:

final state = (E, [{x→ 0, y → 0} → 0, {x→ 0, y → 1} → 0.5,

{x→ 1, y → 0} → 0.5, {x→ 1, y → 1} → 0])
(4.6)

By looking at the final state, we can conclude that the assertion x 6= y is satisfied with an expectation

1, and similarly, we can evaluate the satisfaction of other assertions by testing them against the final

state of the program.

Definition 21. Starting from a Quantum-Classical state ∆ ∈ Σ, the final state after executing the pro-

gram Prog is denoted by Prog[∆].

For example, we can say that if Prog is the program in Example 5, and ∆ = {} then

Prog[∆] = final state

This definition is going to be used later in the definition of Hoare triple.

4.6 A Hoare Logic for Quantum-Classical Programs

The triple {P}Prog{Q} denotes a formula to express the correctness of the program Prog.

Definition 22. Let P and Q be Quantum-Classical assertions. We say that {P}Prog{Q} is totally

correct, and we write

|=tot {P}Prog{Q}

if

∀∆ ∈ Σ, Exp(∆ |= P) ≤ Exp(Prog[∆] |= Q) (4.7)

Moreover, we say that {P}Prog{Q} is partially correct, and we write

|=par {P}Prog{Q}

if

∀∆ ∈ Σ, Exp(∆ |= P) ≤ Exp(Prog[∆] |= Q) + tr(∆)− tr(Prog[∆]) (4.8)

47

Where tr(∆) =
∑

(σ,ρ)∈∆ tr(ρ). The expression tr(Prog[∆]) − tr(∆) represents the probability of the

termination of Prog.

Lemma 9. If {P}Prog{Q} is totally correct, then it is partially correct, or,

|=tot {P}Prog{Q} =⇒ |=par {P}Prog{Q}

There is no restriction on the sets of quantum variables in Prog, P or Q. Therefore, they could be

different. The statements above are defined for any superset V that contains all those sets.

The following table lists all the Hoare proof rules for the instructions of the language:

(Skip)
{P}skip{P}

(Asgn)
{(σ[x/e], ρ)} x := e {(σ, ρ)}

(Init)
{(σ, (〈0| ⊗ I2dim−1).ρ.(|0〉 ⊗ I2dim−1))} new qubit {(σ, ρ)}

(App)
{(σ, padding(U, n)†.ρ.padding(U, n))} q n∗ = U {(σ, ρ)}

(Meas)
{(σ[x/0],M0(n)†.ρ.M0(n))} ∧ {(σ[x/1],M1(n)†.ρ.M1(n))} x := meas n {(σ, ρ)}

(If)
{b ∧ P}S1{Q} ∧ {¬b ∧ P}S2{Q}
{P}if b then S1 else S2 end {Q}

(While)
{b ∧ P}S{P}

{P}while b do S end {¬b ∧ P}

(Weakness)
P v P ′ ∧ {P ′}S{Q′} ∧Q′ v Q

{P}S{Q}

Let S be the program defined in Example 5. In the following example we will prove the Hoare triple

{True→ 1} S {(x 6= y)→ 1}

Using a similar style as in [1], the triple can be proved as follows:

{True→ 1} ≡ {True→ 〈0|0〉〈0|0〉}

q 0 := 0

{True→ ρ0} (Init)

q 1 := 0

{True→ ρ1} (Init)

48

q 0 ∗ = H

{True→ ρ2} (App)

x := meas q 0;

{(x = 0→ ρ30)} (Meas - 0 case)

if x == 0 then q 1 ∗ = X else skip

{(x = 0→ ρ40)} (If)

y := meas q 1

{(x = 0 ∧ y = 0)→ ρ500
} (Meas - 00 case)

{P [x = 0 ∧ y = 0] = 0} Equiv

{(x = 0 ∧ y = 1)→ ρ501
} (Meas - 01 case)

{P [x = 0 ∧ y = 1] = 0.5} Equiv

{(x = 0→ ρ31)} (Meas - 1 case)

if x == 0 then q 1 ∗ = X else skip

{(x = 0→ ρ41)} (If)

y := meas q 1

{(x = 0 ∧ y = 0)→ ρ510
} (Meas - 10 case)

{P [x = 1 ∧ y = 0] = 0.5} Equiv

{(x = 0 ∧ y = 1)→ ρ511
} (Meas - 11 case)

{P [x = 1 ∧ y = 1] = 0} Equiv

{x 6= y → 1} Imp

Which concludes the proof.

49

4.7 A Use Case: Quantum Teleportation

We talked about Quantum Teleportation in Chapter 2, and we can notice that it is a good example of a

quantum program that uses classical variables. Therefore, in this section we are going to reason about

it using the logic defined in Section 4.6.

First, the following piece of code is written in our language to represent a case of Quantum Teleportation

in which the qubit that we intend to teleport has the state |1〉:

Listing 4.1: Quantum teleportation in FY

new q;

new q;

new q;

// some manipulations to q 0

q 1 *= H;

q 1 2 *= CNOT;

q 0 1 *= CNOT;

q 0 *= H;

X0 :=meas 0;

X1 :=meas 1;

if X0 == 0 then

if X1 == 1 then

q 2 *= X

else:

skip

end

else

if X1 == 1 then

q 2 *= Z;

q 2 *= X;

else:

q 2 *= Z;

end

end

50

4.7.1 Reasoning using Operational Semantics

We consider that the teleported qubit is in the state α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1,

|α|2 represents the probability that the qubit will be measured to 0, and |β|2 represents the probability of

measuring 1. We expect the density matrix before executing the fourth line to be

ρ0 = ((α |0〉+ β |1〉)⊗ |0〉 ⊗ |0〉)(〈0| ⊗ 〈0| ⊗ (α 〈0|+ β 〈1|))

Following the operational semantics in Section 4.5, we start from the fourth line by applying a Hadamard

gate on the teleported qubit, the classical state remains unchanged:

ρ1 = (I ⊗H ⊗ I)ρ0(I ⊗H ⊗ I)†

Then we move to next line, where we apply a CNOT where the teleported qubit and the receiver qubit,

where the receiver is the target, and the density matrix changes to:

ρ2 = (I ⊗ CNOT)ρ1(I ⊗ CNOT)†

Next will be apply CNOT on the mediator and the teleported (as a target) qubits, leading to ρ3:

ρ3 = (CNOT ⊗ I)ρ2(CNOT ⊗ I)†

In the end of Phase 2, we apply a Hadamard gate on the teleported qubit:

ρ4 = (H ⊗ I ⊗ I)ρ3(H ⊗ I ⊗ I)†

Then we enter Phase 3, that involves measuring the teleported qubit and the mediator, and we do this

sequentially, giving us the following classical states associated with their density matrices:

{(x0 → 0, x1 → 0)→ ρ400
, (x0 → 0, x1 → 1)→ ρ401

,

(x0 → 1, x1 → 0)→ ρ410
, (x0 → 1, x1 → 1)→ ρ411

}

where

ρ40
= (I ⊗ I ⊗ |0〉 〈0|)ρ4(I ⊗ I ⊗ |0〉 〈0|)†

ρ41
= (I ⊗ I ⊗ |1〉 〈1|)ρ4(I ⊗ I ⊗ |1〉 〈1|)†

ρ400
= (I ⊗ |0〉 〈0| ⊗ I)ρ40

(I ⊗ |0〉 〈0| ⊗ I)†

51

ρ401
= (I ⊗ |0〉 〈0| ⊗ I)ρ41

(I ⊗ |0〉 〈0| ⊗ I)†

ρ410
= (I ⊗ |1〉 〈1| ⊗ I)ρ40

(I ⊗ |1〉 〈1| ⊗ I)†

ρ411 = (I ⊗ |1〉 〈1| ⊗ I)ρ41(I ⊗ |1〉 〈1| ⊗ I)†

The chained if-statements are applied to the classical states that satisfy the condition, so for instance,

the skip instruction is only applied to the first state {(x0 → 0, x1 → 0) → ...}, leaving the density matrix

unmodified, X is applied on q2 for the state {(x0 → 0, x1 → 1)→ ...} and so on. So the state afterwards

is:

{(x0 → 0, x1 → 0)→ ρ00, (x0 → 0, x1 → 1)→ ρ01,

(x0 → 1, x1 → 0)→ ρ10, (x0 → 1, x1 → 1)→ ρ11}

where

ρ00 = ρ400

ρ01 = (X ⊗ I ⊗ I)ρ401
(X ⊗ I ⊗ I)†

ρ10 = (Z ⊗ I ⊗ I)ρ410
(Z ⊗ I ⊗ I)†

ρ11 = (X ⊗ I ⊗ I)(Z ⊗ I ⊗ I)ρ411
(Z ⊗ I ⊗ I)†(X ⊗ I ⊗ I)†

For each one of the classical states above, we can find the state of q2, i.e the probabilities of measuring

0 and 1, by applying the formula P [i] = 〈i| ρ |i〉. We start with the first state:

P [q2 measures to 0] = 〈000| ρ00 |000〉

= 〈000| (I ⊗ I ⊗ |0〉 〈0|)(I ⊗ |0〉 〈0| ⊗ I)ρ4(I ⊗ |0〉 〈0| ⊗ I)†(I ⊗ I ⊗ |0〉 〈0|)† |000〉

= |α|2

and

P [q2 measures to 1] = 〈100| ρ00 |001〉

= 〈100| (I ⊗ I ⊗ |0〉 〈0|)(I ⊗ |0〉 〈0| ⊗ I)ρ4(I ⊗ |0〉 〈0| ⊗ I)†(I ⊗ I ⊗ |0〉 〈0|)† |001〉

= |β|2

52

For the second case we have:

P [q2 measures to 0] = 〈010| ρ01 |010〉

= 〈010| (X ⊗ I ⊗ I)(I ⊗ I ⊗ |1〉 〈1|)(I ⊗ |0〉 〈0| ⊗ I)ρ4(I ⊗ |0〉 〈0| ⊗ I)†(I ⊗ I ⊗ |1〉 〈1|)†

(X ⊗ I ⊗ I)† |010〉

= |α|2

and

P [q2 measures to 1] = 〈110| ρ01 |011〉

= (X ⊗ I ⊗ I)(I ⊗ I ⊗ |1〉 〈1|)(I ⊗ |0〉 〈0| ⊗ I)ρ4(I ⊗ |0〉 〈0| ⊗ I)†(I ⊗ I ⊗ |1〉 〈1|)†(X ⊗ I ⊗ I)†

= |β|2

Similarly, we can prove that q2 keeps the distribution |α|2, |β|2 for the third and fourth case, which is the

same as q0, hence the algorithm is correct. The detailed calculations are in the appendix.

4.7.2 Reasoning using Hoare Logic

The precondition before executing the algorithm (starting from line 4), is

q0 = α |0〉+ β |1〉 ∧ q1 = |0〉 ∧ q2 = |0〉

and we want to prove that the postcondition

q2 = α |0〉+ β |1〉

holds after executing the program in Figure 2.2. We can prove it as follows:

{True→ ρ0} (App)

q 1 ∗ = H;

{True→ ρ1} (App)

q 1 2 ∗ = CNOT ;

{True→ ρ2} (App)

q 0 1 ∗ = CNOT ;

53

{True→ ρ3} (App)

q 0 ∗ = H;

{True→ ρ4} (App)

x0 :=meas 0;

{True[x0/0]→ ρ40} (Meas - 0 case)

x1 :=meas 1;

{True[x0/0, x1/0]→ ρ400
} (Meas - 00 case)

{(x0 == 0 ∧ x1 == 0)→ ρ400
} (Equiv)

if x0 == 0 then...end

{(x0 == 0 ∧ x1 == 0)→ ρ00} (If, App)

{P [M(q2) = 0] = 〈000| ρ00 |000〉 = |α|2

P [M(q2) = 1] = 〈100| ρ00 |001〉 = |β|2} (Equiv)

{True[x0/0, x1/1]→ ρ400} (Meas - 01 case)

{(x0 == 0 ∧ x1 == 1)→ ρ401} (Equiv)

if x0 == 0 then...end

{(x0 == 0 ∧ x1 == 1)→ ρ01} (If, App)

{P [M(q2) = 0] = 〈010| ρ01 |010〉 = |α|2

P [M(q2) = 1] = 〈110| ρ01 |011〉 = |β|2} (Equiv)

{True[x0/1]→ ρ41
} (Meas - 1 case)

x1 :=meas 1;

{True[x0/1, x1/0]→ ρ410
}(Meas - 10 case)

{(x0 == 0 ∧ x1 == 0)→ ρ410
} (Equiv)

54

if x0 == 0 then...end

{(x0 == 1 ∧ x1 == 0)→ ρ10} (If, App)

{P [M(q2) = 0] = 〈001| ρ10 |100〉 = |α|2

P [M(q2) = 1] = 〈101| ρ10 |101〉 = |β|2} (Equiv)

{True[x0/1, x1/1]→ ρ400
}(Meas - 11 case)

{(x0 == 1 ∧ x1 == 1)→ ρ411}(Equiv)

if x0 == 0 then...end

{(x0 == 1 ∧ x1 == 1)→ ρ01} (If, App)

{P [M(q2) = 0] = 〈011| ρ11 |011〉 = |α|2

P [M(q2) = 1] = 〈111| ρ11 |111〉 = |β|2}(Equiv)

55

56

5
Mechanization in Coq

Contents

5.1 Logic Mechanization . 59

5.2 Implementation Details . 59

57

58

The practical part of this thesis involves implementing the language in Chapter 4, using the theorem

prover Coq [26]. In this section, we will show our design decisions and choices.

5.1 Logic Mechanization

The theorem prover Coq [26] is a formal proof management tool that facilitates representing mathemat-

ical definitions, concepts theorems and proofs by enabling machine checking. Coq has been used to

formally verify many protocols. Like Coq, there are other formal verification tools, like Isabelle. We chose

Coq to implement our project because of the rich documentation (especially in the Software Foundations

book [27]), and to reuse the work of QWIRE in [28], specifically the mathematical axiomatic definition of

real, complex numbers, matrices and quantum computing.

The development process constituted of following phases:

1. Implementing the syntax of the language as an imperative language, by making use of the work

in [27].

2. Implementing the concept of Quantum-classical state.

3. Implementing the semantics of the language.

4. Implementing Quantum-classical assertions, and the formula of expectation.

5. Implementing the proof system defined in Chapter 4.

6. Proving the correctness of the system’s rules.

7. Starting Proving the soundness and the completeness of the system.

8. Writing some examples in our language and using the proof system to reason about them in Coq.

5.2 Implementation Details

The complete development of FY, the work of this thesis, consists of:

• 13 Coq files

• 3816 lines code

• 123 Definitions, Fixpoints and Inductives.

• 274 Theorems and Lemmas.

We can break down some Coq files as follows:

59

5.2.1 Syntax.v

In this file we define the syntax of FY, the arithmetic and boolean expressions and its syntactic repre-

sentation.

Arithmetic expressions in FY are defined inductively to include the ones defined in Section 4.1

Inductive arith_exp : Type :=

| AId (x : string)

| ANum (n : nat)

| APlus (a1 a2 : arith_exp)

| AMinus (a1 a2 : arith_exp)

| AMult (a1 a2 : arith_exp)

| ADiv (a1 a2 : arith_exp).

and we define some syntactical notations to make writing expressions easier:

Notation "x - y" := (AMinus x y) (in custom com at level 50, left associativity).

Notation "x + y" := (APlus x y) (in custom com at level 50, left associativity).

Notation "x * y" := (AMult x y) (in custom com at level 40, left associativity).

Notation "x / y" := (ADiv x y) (in custom com at level 40, left associativity).

Similarly we define the boolean expressions and quantum gates:

Inductive bool_exp : Type :=

| BTrue

| BFalse

| BEq (a1 a2 : arith_exp)

| BLe (a1 a2 : arith_exp)

| BNot (b : bool_exp)

| BAnd (b1 b2 : bool_exp)

| BOr (b1 b2 : bool_exp).

Inductive gate_exp : Type :=

| GH

| GX

| GY

| GZ

| GI

| GCNOT.

And its notational syntax is defined as follows:

60

Notation "'true'" := BTrue (in custom com at level 0).

Notation "'false'" := BFalse (in custom com at level 0).

Notation "x <= y" := (BLe x y) (in custom com at level 70, no associativity).

Notation "x == y" := (BEq x y) (in custom com at level 70, no associativity).

Notation "x && y" := (BAnd x y) (in custom com at level 80, left associativity).

Notation "x || y" := (BOr x y) (in custom com at level 80, left associativity).

Notation "'~' b" := (BNot b) (in custom com at level 75, right associativity).

Then we defined the language instructions as the following:

Inductive com : Type :=

| CSkip

| CAsgn (x : string) (a : arith_exp)

| CMeas (x : string) (q : nat)

| CInit

| CAppOne (q : nat) (U : gate_exp)

| CAppTwo (q1 : nat) (q2 : nat) (U : gate_exp)

| CSeq (c1 c2 : com)

| CIf (b : bool_exp) (c1 c2 : com)

| CWhile (b : bool_exp) (c : com).

And its syntactical representation as defined in Section 4.1:

Notation "'skip'" :=

CSkip (in custom com at level 0) : com_scope.

Notation "x ':=' y" :=

(CAss x y)

(in custom com at level 0, x constr at level 0,

y at level 40, no associativity) : com_scope.

Notation "x ':=meas' n" :=

(CMeas x n)

(in custom com at level 0, x constr at level 0,

n constr at level 77, no associativity) : com_scope.

Notation "'new_qubit'" :=

(CInit)

(in custom com at level 0, no associativity) : com_scope.

Notation "'q' n *= U" :=

(CAppOne n U)

61

(in custom com at level 0, n constr at level 0,

U at level 85, no associativity) : com_scope.

Notation "'q' n m *= U" :=

(CAppTwo n m U)

(in custom com at level 0, n constr at level 0,

m constr at level 0, U at level 85,

no associativity) : com_scope.

Notation "x ; y" :=

(CSeq x y)

(in custom com at level 90, right associativity) : com_scope.

Notation "'if' x 'then' y 'else' z 'end'" :=

(CIf x y z)

(in custom com at level 89, x at level 99,

y at level 99, z at level 99) : com_scope.

Notation "'while' x 'do' y 'end'" :=

(CWhile x y)

(in custom com at level 89, x at level 99, y at level 99) : com_scope.

The following example shows how a program could be written in Coq:

Example Prog : com :=

<{ new_qubit;

new_qubit;

q 0 *= GH;

X :=meas 0%nat;

if X == (0 % nat) then

q 1 *= GX

else

skip

end;

Y :=meas 1%nat

}>.

5.2.2 State.v

In this module, we defined the concept of Quantum classical state as a list of pairs (maps, matrices),

and contains a variety of Fixpoints to describe how the state updates, and some theorems about them.

62

First, we need to define the semantical evaluation of arithmetic, boolean expressions and quantum gates

in order to be used in State’s Calculations:

Fixpoint aeval (st : total_map nat)

(a : arith_exp) : nat :=

match a with

| ANum m => m

| AId x => st x

| <{a1 + a2}> => (aeval st a1) + (aeval st a2)

| <{a1 - a2}> => (aeval st a1) - (aeval st a2)

| <{a1 * a2}> => (aeval st a1) * (aeval st a2)

| <{a1 / a2}> => (aeval st a1) / (aeval st a2)

end.

Fixpoint beval (st : total_map nat) (b : bool_exp) : bool :=

match b with

| <{true}> => true

| <{false}> => false

| <{a1 == a2}> => (aeval st a1) =? (aeval st a2)

| <{a1 <= a2}> => (aeval st a1) <=? (aeval st a2)

| <{~ b1}> => negb (beval st b1)

| <{b1 && b2}> => andb (beval st b1) (beval st b2)

| <{b1 || b2}> => orb (beval st b1) (beval st b2)

end.

Fixpoint geval (g : gate_exp) : Unitary _ :=

match g with

| GI => I 2

| GH => H

| GX => X

| GZ => Z

| GY => Y

| GCNOT => CNOT

end.

Then we define the concept of Quantum Classical State:

Definition State (dim: nat): Type := list ((total_map nat)*(Unitary (2^dim))).

Then, we defined the helper functions in Section 4.5:

63

Fixpoint padding (dim : nat) (qubit : nat) (U : Unitary 2) : Unitary (2^dim) :=

match dim with

| O%nat => (if qubit =? 0%nat then U else (I 2))

| S dim' => (padding dim' qubit U) ⊗ (if qubit =? n then U else I 2)

end.

Fixpoint GetMeasurementBasis (dim : nat) (meas_qubit : nat) (isZero : bool)

: Unitary (2^dim) :=

match dim with

| 0%nat => if qubit =? dim then (if isZero then |0〉〈0| else |1〉〈1|) else (I 2)

| S dim' => (if qubit =? dim then

(if isZero

then ((GetMeasurementBasis dim' meas_qubit isZero) ⊗ (|0〉〈0|))

else ((GetMeasurementBasis dim' meas_qubit isZero) ⊗ (|1〉〈1|)))

else (GetMeasurementBasis dim' meas_qubit isZero) ⊗ (I 2))

end.

To be used later in the operational semantics, we define the operations that specifies how a state

updates, which happen when there is an assignement, qubit initialization, unitary transformation and

measurement.

Fixpoint UpdateStateAssign (n : nat) (state: State n) (x: string)

(a: arith_exp) : State n :=

match state with

| [] => []

| st :: l => (pair (x !-> (aeval (fst st) a); fst st) (snd st))

:: (UpdateStateAssign n l x a)

end.

Fixpoint UpdateStateInit (n : nat) (state: State n) : State (n + 1%nat) :=

match state with

| [] => []

| st :: l => if n =? 0%nat then

(pair (fst st) (|0〉〈0|)) :: (UpdateStateInit n l)

else

(pair (fst st) (|0〉 ⊗ (snd st) ⊗ 〈0|)) :: (UpdateStateInit n l)

end.

Fixpoint UpdateStateApply (n : nat) (state: State n) (qubit : nat) (U: gate_exp): State n:=

match state with

64

| [] => []

| st :: l => match U with

| GCNOT => (pair (fst st) ((padding (n - 2%nat)

qubit (geval U)) × (snd st)

× (padding (n - 2%nat) qubit (geval U))†))

:: (UpdateStateApply n l qubit U)

| _ => (pair (fst st) ((padding (n - 1%nat) qubit (geval U))

× (snd st) × (padding (n - 1%nat) qubit (geval U))†))

:: (UpdateStateApply n l qubit U)

end

end.

Fixpoint UpdateStateMeasure (n: nat) (state: State n) (x : string) (qubit : nat) : State n :=

match state with

| [] => []

| st :: l => (pair (x !-> 0%nat; fst st)

((GetMeasurementBasis (n - 1%nat) qubit true) × (snd st) ×

(GetMeasurementBasis (n - 1%nat) qubit true)†)) ::

(pair (x !-> 1%nat; fst st)

((GetMeasurementBasis (n - 1%nat) qubit false) × (snd st) ×

(GetMeasurementBasis (n - 1%nat) qubit false)†)) ::

(UpdateStateMeasure n l x qubit)

end.

Finally, we implemented an auxiliary operation that filters a state to its elements that satisfy a Boolean

expression, to be used later for if and while rules.

Fixpoint Filter (n : nat) (state: State n) (b : bool_exp): State n :=

match state with

| [] => []

| st :: l => if (beval (fst st) b)

then (st :: (Filter n l b))

else (Filter n l b)

end.

65

5.2.3 Semantics.v

In this file, we implement our Operational semantics (defined in Section 4.5). The Inductive ceval eval-

uates not only the state change, but also the space dimension, the first two arguments refers to the

dimension before and after applying the instruction, and the fourth and fifth arguments are the states

before and after the instruction.

Inductive ceval : nat -> nat -> com

-> State 1%n -> State 1%n -> Prop :=

| E_Skip : forall n st,

ceval n n <{ skip }> st st

| E_Asgn : forall n st a x,

ceval n n <{ x := a }> st (UpdateStateAssign n st x a)

| E_Init : forall n st,

ceval n (n + 1%nat) <{ new_qubit }> st (UpdateStateInit n st)

| E_AppOne : forall n st U m,

ceval n n <{ q m *= U }> st (UpdateStateApply n st m U)

| E_AppTwo : forall n st U m r,

ceval n n <{ q m r *= U }> st (UpdateStateApply n st m U)

| E_Meas : forall n st x m,

ceval n n <{ x :=meas m }> st (UpdateStateMeasure n st x m)

| E_Seq : forall n n' n'' c1 c2 st st' st'',

ceval n n' c1 st st' ->

ceval n' n'' c2 st' st'' ->

ceval n n'' <{ c1 ; c2 }> st st''

| E_If : forall n n' st st' st'' b c1 c2,

ceval n n' c1 (Filter n st b) st' ->

ceval n n' c2 (Filter n st (BNot b)) st'' ->

ceval n n' <{ if b then c1 else c2 end }> st (st' ++ st'')

| E_WhileTrue : forall n n' st st' st'' b c,

ceval n n' c (Filter n st b) st' ->

ceval n n' <{ while b do c end }> (Filter n st b) st' ->

ceval n n' <{ while b do c end }> st' st''

| E_WhileFalse : forall n n' st b c,

ceval n n' <{ while b do c end }> (Filter n st (BNot b)) (Filter n st (BNot b)).

66

5.2.4 Assertion.v

In this module, we implement the definition of a quantum classical assertion, and some ulterior defini-

tions that helps implementing the proof system later.

Definition Assertion (dim: nat) : Type := (total_map nat) * (bool_exp * (Unitary (2^dim))).

Then we implement some getters and a constructor:

Definition StateOf {n: nat} (a: Assertion n) : total_map nat := fst a.

Definition PropOf {n: nat} (a: Assertion n): bool_exp := fst (snd a).

Definition DensityOf {n: nat} (a: Assertion n) := snd (snd a).

Definition AssertionOf (n: nat) (st: total_map nat)

(prop: bool_exp) (U: Unitary (2^n)) : Assertion n := (st, (prop, U)).

Then we implemented the definition of Expectation of satisfaction in Definition 18

Fixpoint Expectation (dims dima : nat)

(state: State dims)

(a: Assertion dima) : R :=

match state with

| [] => 0%R

| st :: l =>

if beval (mergeMaps (fst st) (StateOf a)) (PropOf a) then

Rplus (fst (trace ((complement ns na (snd st))

× (complement na ns (DensityOf a)))))

(Expectation dims dima l a)

else (Expectation dims dima l a)

end.

where the function complement is a helper function that applies a Kronecker product of Identity opera-

tors, in order to equalize the dimensions and make the multiplication operation possible.

In addition to the previous definitions, we added some concepts to help in the next module. ap-

ply sub simulates how an Pre-condition would be before applying a unitary transformation, and similarly

init sub,asgn sub and meas sub with respect to initialization, assignment and measurement.

Definition init_sub (n: nat) (P : Assertion n) : Assertion (n - 1) :=

pair (StateOf P) (pair (PropOf P) (pre_init n (DensityOf P))).

Definition apply_sub n (U: Unitary (2^n)) (P : Assertion n) : Assertion n :=

pair (StateOf P) (pair (PropOf P) ((padding n m U)†

67

× (DensityOf P) × (padding n m U))).

Definition asgn_sub {n} (P: Assertion n) (x: string)

(e: nat) : Assertion n := (pair (x !-> e; _ !-> 0%nat)

(pair (PropOf P) (DensityOf P))).

Definition meas_sub {n} (P: Assertion n) (x: string) (v: nat)

(m : nat) : Assertion n :=

((x !-> v; StateOf P) , ((PropOf P),

(GetMeasurementBasis (n - 1%nat) m (v =? 0%nat))

× (DensityOf P)

× (GetMeasurementBasis (n - 1%nat) m (v =? 0%nat))†)).

where pre init implements the function:

pre init(ρ, dim) = (〈0| ⊗ I2dim−1).ρ.(|0〉 ⊗ I2dim−1)])

We also implemented the weakness relation between two assertions as follows:

Definition weaker (ns na1 na2 : nat)

(state: State ns)

(assert1: Assertion na1)

(assert2: Assertion na2) : Prop :=

(Expectation ns na1 state assert1)

<= (Expectation ns na2 state assert2).

And the concept when the classical part of the first assertion implies the classical part of the second

one, given that they both have equal density matrix:

Definition classicalPropsImp (np nq: nat)(P : Assertion np)

(Q : Assertion nq) : Prop := forall st,

(DensityOf P) = (DensityOf Q) ->

beval (mergeMaps st (StateOf P)) (PropOf P) = true ->

beval (mergeMaps st (StateOf Q)) (PropOf Q) = true.

where the function mergeMaps is a utilitary function that merges two total maps.

To implement If rule in Section 4.6, we need to have a concept to describe b ∧ P where b is a boolean

expression. for this purpose, we implemented the following definition:

Definition pre_if_assertion_boolean {n} (P: Assertion n) (b: bool_exp)

: Assertion n := (pair (StateOf P)

(pair (BAnd b (PropOf P)) (DensityOf P))).

68

5.2.5 Logic.v

In this file, we implemented Hoare triple as specified in Section 4.6, and the theorems that describe the

proof system in Section 4.6.

Definition hoare_triple {dimp dimq: nat}

(P : Assertion dimp) (c : com) (Q : Assertion dimq): Prop :=

forall dims1 dims12

(st1: State dims1)

(st2: State dims2),

(ceval dimp dimp c st1 st2) ->

(Expectation dims dimp st1 P) <= (Expectation dims2 dimq st2 Q).

The following Theorems are the rules of the proof system in Section 4.6:

Theorem fy_skip: forall n (P: Assertion n),

hoare_triple P <{skip}> P.

Theorem fy_sequence: forall np nq nr (P: Assertion np)

(Q: Assertion nq) (R: Assertion nr) c1 c2,

hoare_triple P c1 Q ->

hoare_triple Q c2 R ->

hoare_triple P <{ c1;c2 }> R.

Theorem fy_assign: forall n x e (P: Assertion n),

hoare_triple (asgn_sub P x e) <{ x := e }> P.

Theorem fy_if: forall (n: nat) (b: bool_exp) (c1 c2: com)

(P Q: Assertion n),

hoare_triple (pre_if_assertion_boolean P b) c1 Q ->

hoare_triple (pre_if_assertion_boolean P (BNot b)) c2 Q ->

hoare_triple P <{ if b then c1 else c2 end }> Q.

Theorem fy_init: forall n (P: Assertion n),

hoare_triple (init_sub n P) <{ new_qubit }> P.

Theorem fy_apply: forall n m G (P: Assertion n),

hoare_triple (apply_sub n m (geval G) P) <{ q m *= G }> P.

69

Theorem fy_measure: forall n x m (P: Assertion n),

hoare_triple (meas_sub P x 1%nat m) <{ x :=meas m }> P /\

hoare_triple (meas_sub P x 0%nat m) <{ x :=meas m }> P.

Theorem fy_while: forall n b c (P: Assertion n),

hoare_triple (pre_if_assertion_boolean P b) c P ->

hoare_triple P <{ while b do c end }> (pre_if_assertion_boolean P (BNot b)).

Theorem fy_weakness: forall n c (P Q P' Q': Assertion n),

hoare_triple P c Q ->

(forall ns (st: State ns)),

weaker ns n n st P' P) ->

(forall ns (st: State ns)),

weaker ns n n st Q Q') ->

hoare_triple P' c Q'.

Theorem fy_imp_pre: forall n c (P Q P': Assertion n),

hoare_triple P c Q ->

(DensityOf P) = (DensityOf P') ->

classicalPropsImp n n P' P ->

hoare_triple P' c Q.

Theorem fy_imp_post: forall n c (P Q Q': Assertion n),

hoare_triple P c Q ->

(DensityOf Q) = (DensityOf Q') ->

classicalPropsImp n n Q Q' ->

hoare_triple P c Q'.

5.2.6 Soundness.v

We started (but did not finish) proving proving that the logic is sound and complete formally in the file

Soundness.v, as Feng and Ying [1] stated, the logic in Section 4.6 is sound and complete.

First we start by formalizing the Derivability:

Inductive derivable:

nat -> nat ->

70

Assertion 1 -> com -> Assertion 1 -> Type :=

| H_Skip : forall n (P: Assertion n),

derivable n n P <{ skip }> P

| H_Init : forall n (P: Assertion n),

derivable n (n + 1)%nat (init_sub n P) <{ new_qubit }> P

| H_App : forall n G (P: Assertion n) m,

derivable n n (apply_sub n m (geval G) P) <{ q m *= G }> P

| H_Asgn : forall n (P: Assertion n) x e,

derivable n n (AssertPreAsgn P x e) <{ x := e }> P

| H_Meas_0 : forall n m (P: Assertion n) x,

derivable n n (AssertPreMeas P x 0 m) <{ x :=meas m }> P

| H_Meas_1 : forall n m (P: Assertion n) x,

derivable n n (AssertPreMeas P x 1 m) <{ x :=meas m }> P

| H_Seq : forall np nq nr (P: Assertion np) c

(Q: Assertion nq) d (R: Assertion nr),

derivable np nq P c Q ->

derivable nq nr Q d R ->

derivable np nr P <{ c;d }> R

| H_If : forall np nq (P: Assertion np)

(Q: Assertion nq) b c1 c2,

derivable np nq (AssertPreIfTrue P b) c1 Q ->

derivable np nq (AssertPreIfTrue P (BNot b)) c2 Q ->

derivable np nq P <{if b then c1 else c2 end}> Q

| H_While : forall n (P: Assertion n) b c,

derivable n n (AssertPreIfTrue P b) c P ->

derivable n n P <{while b do c end}> (AssertPreIfTrue P (BNot b))

| H_Weakness : forall np nq np' nq'

(P: Assertion np) (Q: Assertion nq)

(P': Assertion np') (Q': Assertion nq') c,

derivable np nq P c Q ->

(forall ns (st: State ns), weaker ns np np' st P' P) ->

(forall ns (st: State ns), weaker ns nq nq' st Q Q') ->

derivable np' nq' P' c Q'.

A logic is sound when every derivable rule is valid, While it is complete when every valid rule is derivable.

we formalize it as follows:

71

Theorem logic_sound : forall np nq (P: Assertion np) c (Q: Assertion nq),

derivable np nq P c Q -> valid np nq P c Q.

Theorem logic_complete: forall np nq (P: Assertion np) c (Q: Assertion nq),

valid np nq P c Q -> derivable np nq P c Q.

5.2.7 Utils.v

In this file, we included all the lemmas, facts, axioms and theorems that were used in the proofs, and are

related to Maps, Real numbers, Complex numbers, matrices, and Quantum computing foundations. We

took most of the elements from the series Software foundation [27] and from Robert Rand et al’s work

in [28]. We added some more theorems that proves some properties of traces like distributive and cyclic

properties, and some useful facts about maps. For instance:

Lemma matrices_distributive: forall {n} (m1 m2 m3: Matrix n n),

m1 × (m2 + m3) = m1 × m2 + m1 × m3.

Lemma equal_traces_comm: forall {n} (p1 p2 p3: Matrix n n),

trace (m1 × m2) = trace (m2 × m1).

5.2.8 MatricesConverter.py

We developed a Python script that solves a quantum expression (with kets, bras and gates), into a

matricial form that facilitates calculations later. The scripts require a manual supervision by the developer

who inputs the expression and the name of the lemma.

Example 10. If the developer entered the expression:

((I2⊗ CNOT)× (CNOT ⊗ I2)× (H ⊗ I2⊗ I2)× (| 0〉 ⊗ (| 0〉 ⊗ (| 0〉〈0 |)

⊗〈0 |)〈0 |)× (H ⊗ I2⊗ I2)† × (CNOT ⊗ I2)† × (I2⊗ CNOT)†)

and decided to name it H4, then the script will generate the following:

Lemma H4:

(I 2 ⊗ CNOT ⊗ I 2 ⊗ I 2 × (CNOT ⊗ I 2 ⊗ I 2 ⊗ I 2)

× (H ⊗ I 2 ⊗ I 2 ⊗ I 2) × (| 0 〉 ⊗ (| 0 〉 ⊗ |0〉〈0| ⊗ 〈0|) ⊗ 〈0|)

× (H ⊗ I 2 ⊗ I 2 ⊗ I 2) † × (CNOT ⊗ I 2 ⊗ I 2 ⊗ I 2) †

× (I 2 ⊗ CNOT ⊗ I 2 ⊗ I 2) †)

= l2M [[1/2;0;0;0;0;0;0;1/2];

72

[0;0;0;0;0;0;0;0];

[0;0;0;0;0;0;0;0];

[0;0;0;0;0;0;0;0];

[0;0;0;0;0;0;0;0];

[0;0;0;0;0;0;0;0];

[0;0;0;0;0;0;0;0];

[1/2;0;0;0;0;0;0;1/2]].

Proof.

(* BY PYTHON SCRIPT *)

Admitted.

5.2.9 Examples

In our work, we tried to prove some known algorithms. In the following we will show a small example of

how can we reason about Coin toss program using our model:

Definition Prog : com :=

<{ new_qubit;

q 0 *= GH;

X :=meas 0

}>.

We can specify this program using directly the operational semantics as follows:

Theorem operational_sem:

ceval 0 1 Prog [((_ !-> 0%nat), I 1)]

[((X !-> 0%nat; _ !-> 0%nat), 0.5 * |0〉〈0|);

((X !-> 1%nat; _ !-> 0%nat), 0.5 * |1〉〈1|)].

If we want to reason about the statement x = 0 using Hoare logic, we can define assertions pre and

post are defined as follows:

Definition pre : Assertion 0 := ((_ !-> 0%nat), (BTrue, I 1)).

Definition post : Assertion 1 := ((_ !-> 0%nat), (<{ X == (0 % nat)}>, 0.5 * |0〉〈0|)).

Then it is sufficient to prove the following theorem to assure that the tossing a coin will give ”heads”

with a probability 0.5:

Theorem prog_correct: hoare_triple pre Prog post.

73

We also implemented and proved a series of intermediate theorems and lemmas, to help us proving

the theorems above. Nonetheless, there is still some theorems (mostly related to mathematical facts)

that were left unproven, although we were able to prove them informally.

The work also contains more examples to reason about like Coin Tossing, GHZ, Quantum Telepor-

tation algorithm, Deutsch-Josza Algorithm, and Grover algorithm, but some of them are incomplete.

The code is available in https://github.com/sr-lab/quantum-hoare-logic. The following table illus-

trates some statistics about the project.

Table 5.1: A summary of files content in FY

File LoC Theorems Defintions
Syntax.v 103 0 4

Semantics.v 40 0 1
State.v 112 0 13
Logic.v 868 46 6

Assertion.v 88 2 15
Soundness.v 71 2 2

Utils.v 1674 175 67
Examples.v 234 20 8
CoinToss.v 88 2 4

GHZ.v 304 0 1
Teleportation.v 64 0 1

Grover.v 80 0 1
Totals 3816 274 123

74

https://github.com/sr-lab/quantum-hoare-logic

6
Conclusion

Contents

6.1 Results . 77

6.2 Limitations of the Current Solution . 77

6.3 Suggestions and Future work . 78

75

76

In this section, we are going to list the results, the challenges that face our solution, and how could

they be handled in the future.

6.1 Results

Our thesis’s work presented a contribution towards facilitating the development verifiable quantum pro-

grams with quantum and classical variables. We implemented in Coq the concepts presented in [1], and

started formally proving the soundness and completeness of the logic in Section 4.6. For the future, we

have a clear road-map (Section 6.3) to continue developing this project towards making it easier to be

used by developers.

6.2 Limitations of the Current Solution

There are some issues in some parts of our solution, like the Syntax or the Proof system’s implementa-

tion, in the following we list some of those issues:

• The inability to reason about assertions with Real numbers: Our arithmetic expressions contains

only boolean and natural values, and it was not possible to extend the expressions to contain real

values, due to the axiomatic definition of Real numbers, which implied the impossibility to cast Real

numbers comparison relations to boolean.

• Proving some programs took too many lines and longer time than desired.

• Lack of Expressiveness: our current syntax does not allow to initialize many qubits at once, mea-

suring many qubits, and applying gates on multiple qubits. Also, it does not allow to apply CNOT

gates on nonadjacent qubits, or even on qubits with reverse order.

• We were not able to complete the proofs for the While rule, nor the soundness and completeness

of the system.

• Some intermediate theorems are unproven (formally): to facilitate proving the main theorems,

we used some intermediate theorems. Those theorems were left unproven (with the keyword

Admitted in Coq). The reason was that some of the tactics that we were using to simplify quantum

expressions were failing. To solve this issue, we developed a script in Python to do this job, the

script converts any quantum expression into a matricial form, which allows using the lma tactic

from QWIRE [28].

In the next section, we are going to list some of the suggestions to address those issues.

77

6.3 Suggestions and Future work

There are many directions that could be taken to continue this work in the future, but with different

priorities. The most important direction in the short term is to prove the theorems that are left without a

proof. In the following, we list some of additions that would enhance the work for this thesis.

6.3.1 Soundness and Completeness

In [1], Feng and Ying used the concept of Weakest Liberal precondition to prove the partial and total

correctness of their logic. Hence, the logic defined in Section 4.6 is sound and complete. As future

work, we can formalize the proof using the theorems that we already have proven.

6.3.2 Automating proofs

Proving some of the programs using the proof system in Section 4.6 and our tool took relatively long time

and many lines of code, which could jeopardise the objective of our work to make assuring programs’

correctness easier for developers than waiting in line for execution in some cloud quantum service.

Therefore, we suggest developing our tool to automate proofs, or at least making the process easier for

the developer.

6.3.3 Discard Operation

Upon measuring a qubit, it collapses into one of the states of the space’s basis (either |0〉 or |1〉), and

then it will never leave it again, hence, this qubit is collapsed and will not change its state if it is measured

again. This raises the necessity of implementing a mechanism to discard already measured qubits in

the upcoming operations.

6.3.4 The Dimensional Explosion Problem

When a system contains 1 qubit, then the matrices in states (or assertions) are Unitarian with 2 × 2

dimensions. When we add another qubit, it becomes 4×4, and 8×8 when there are 3 qubits, hence, the

dimensions in a system with n qubits are 2n × 2n. using a vector states to represent the quantum state

instead of Density matrices will only reduce the spacial complexity by half. In Utils.v, matrices are defined

as functions, where entries are 0 by default. This definition saves a significant amount of space, given

that those matrices tend to be sparse. However, the multiplication operations and Kronecker products

still may take a long time to be executed. To tackle this problem, Liu et al in [29] used NumPy to help

executing matrices operation along with Isabelle.

78

6.3.5 Enhancing the Arithmetic, Boolean and Matricial Expressiveness

The language supports a variety of expressions like addition, subtraction, multiplication, division, con-

junction, disjunction and negation. Also, it is possible to represent some mathematical order relations.

However, some algorithms (like Shor) require additional expressions like arithmetic modulation and con-

gruence. One another limitation in the language the ability to apply gates on non-adjacent qubits, i.e,

given a system with 3 qubits, it is impossible to apply a CNOT gate to the first and the third qubits, or

to the second as a control qubit, and the first as a target. In order to support such operations, we can

implement the Swap gate as follows:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

and then, the following equation holds:

SWAP |x〉 |y〉 = |y〉 |x〉

which implies the following equation:

CNOTq0q2 = (SWAP ⊗ I)(I ⊗ CNOT)(I ⊗ SWAP)q0q2

There is another limitation in the language, which is the inability to initialize or measure multiple qubits at

once. In [1], Feng and Ying suggests some syntactic sugar to be implemented in the language regarding

this issue.

6.3.6 Interoperability with External Quantum Computation Platforms

The language in this thesis is embedded in Coq, while it is mostly common to use the tools and lan-

guages in Chapter 2 to develop quantum programs. Therefore, it would be useful to develop a layer

between FY and one of those tools. This layer will help developers to verify their programs before exe-

cuting them on a real quantum computer (usually available via a cloud service), saving them the waiting

time each time a change is needed.

79

80

Bibliography

[1] Y. Feng and M. Ying, “Quantum hoare logic with classical variables,” arXiv preprint

arXiv:2008.06812, 2020.

[2] R. Rand, K. Hietala, and M. Hicks, “Formal verification vs. quantum uncertainty,” in SNAPL, 2019.

[3] L. H. Ramshaw, “Formalizing the analysis of algorithms.” STANFORD UNIV CA DEPT OF COM-

PUTER SCIENCE, Tech. Rep., 1979.

[4] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.

[5] R. Chadha, P. Mateus, and A. Sernadas, “Reasoning about imperative quantum programs,” Elec-

tronic Notes in Theoretical Computer Science, vol. 158, pp. 19–39, 2006.

[6] Y. Kakutani, “A logic for formal verification of quantum programs,” in Annual Asian Computing Sci-

ence Conference. Springer, 2009, pp. 79–93.

[7] M. Ying, “Floyd–hoare logic for quantum programs,” ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 33, no. 6, pp. 1–49, 2012.

[8] D. E. Deutsch, “Quantum computational networks,” Proceedings of the Royal Society of London. A.

Mathematical and Physical Sciences, vol. 425, no. 1868, pp. 73–90, 1989.

[9] M. Ross and M. Oskin, “Quantum computing,” Commun. ACM, vol. 51, no. 7, p. 12–13, Jul. 2008.

[Online]. Available: https://doi.org/10.1145/1364782.1364787

[10] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev.

Mod. Phys., vol. 86, pp. 419–478, Apr 2014. [Online]. Available: https://link.aps.org/doi/10.1103/

RevModPhys.86.419

[11] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical review letters, vol. 67, no. 6,

pp. 661–663, Aug. 1991.

81

https://doi.org/10.1145/1364782.1364787
https://link.aps.org/doi/10.1103/RevModPhys.86.419
https://link.aps.org/doi/10.1103/RevModPhys.86.419

[12] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality

be considered complete?” Phys. Rev., vol. 47, pp. 777–780, May 1935. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRev.47.777

[13] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200,

Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195

[14] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings

35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134.

[15] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, R. Biswas, S. Boixo, F. Brandao,

D. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,

B. Foxen, and J. Martinis, “Quantum supremacy using a programmable superconducting processor,”

Nature, vol. 574, pp. 505–510, 10 2019.

[16] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Proceedings of the Cam-

bridge Philosophical Society, vol. 35, no. 3. Cambridge University Press, 1939, pp. 416–418.

[17] E. Knill, “Conventions for quantum pseudocode,” Los Alamos National Lab., NM (United States),

Tech. Rep., 1996.

[18] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an

unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review

letters, vol. 70, no. 13, p. 1895, 1993.

[19] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of

the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ser. STOC ’96. New

York, NY, USA: Association for Computing Machinery, 1996, p. 212–219. [Online]. Available:

https://doi.org/10.1145/237814.237866

[20] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of

the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, no. 1907,

pp. 553–558, 1992.

[21] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-level quantum language with safe

uncomputation and intuitive semantics,” in Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2020, pp. 286–300.

[22] P. Selinger, “Towards a quantum programming language,” Mathematical Structures in Computer

Science, vol. 14, no. 4, pp. 527–586, 2004.

82

https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1145/237814.237866

[23] T. Kubota, Y. Kakutani, G. Kato, and Y. Kawano, “A formal approach to unconditional security

proofs for quantum key distribution,” in International Conference on Unconventional Computation.

Springer, 2011, pp. 125–137.

[24] E. D’hondt and P. Panangaden, “Quantum weakest preconditions,” Mathematical Structures in

Computer Science, vol. 16, no. 3, pp. 429–451, 2006.

[25] C. Morgan, A. McIver, and K. Seidel, “Probabilistic predicate transformers,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 18, no. 3, pp. 325–353, 1996.

[26] T. C. development team, The Coq proof assistant reference manual, LogiCal Project, 2004, version

8.0. [Online]. Available: http://coq.inria.fr

[27] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg,

and B. Yorgey, Logical Foundations, ser. Software Foundations, B. C. Pierce, Ed. Electronic

textbook, 2021, vol. 1, version 6.1, http://softwarefoundations.cis.upenn.edu.

[28] J. Paykin, R. Rand, and S. Zdancewic, “Qwire: a core language for quantum circuits,” ACM SIG-

PLAN Notices, vol. 52, no. 1, pp. 846–858, 2017.

[29] T. Liu, Y. Li, S. Wang, M. Ying, and N. Zhan, “A theorem prover for quantum hoare logic and its

applications,” arXiv preprint arXiv:1601.03835, 2016.

83

http://coq.inria.fr

84

A
Some Proofs and Calculations

A.1 Theorems

In this appendix, we list some theorems that we used with an informal proof, calculations and some

examples.

Theorem 2. For any quantum classical state δ and a quantum classical assertion θ, x is a classical

variable and e is an expression

exp[δ[x/e] |= θ] = exp[δ |= θ[x/e]]

85

Proof.

exp[δ[x/e] |= (θ, ψ)] =
∑

(σ,ρ)∈δ∧σ|=θ[x/e]

trace(ρ.(ψ ⊗ IqV ars(δ)\qV ars(θ)))

=
∑

(σ,ρ)∈δ∧σ[x/e]|=θ

trace(ρ.(ψ ⊗ IqV ars(δ)\qV ars(θ)))

= exp[δ |= θ[x/e]]

Theorem 3. if A,B were two square matrices with dimensions n⊗ n, then:

trace(A.B) = trace(B.A)

Proof.

trace(A.B) =

n∑
k=1

n∑
i=1

akibik

=

n∑
i=1

n∑
k=1

bkiaik

= trace(B.A)

In the following, we prove the theorem in 1

Theorem 4.

∀ n ∈ Ndim : M0(n).M0(n)† +M1(n).M1(n)† = I

Proof. first we start by proving that ∀ n ≤ dim : M0(n).M0(n)† = M0(n):

M0(n).M0(n)† = ((⊗n−1
i=0 I)⊗ |0〉 〈0| ⊗ (⊗dimi=n+1I))((⊗n−1

i=0 I)⊗ |0〉 〈0| ⊗ (⊗dimi=n+1I))†

= ((⊗n−1
i=0 I)(⊗n−1

i=0 I)†)⊗ ((|0〉 〈0|)(|0〉 〈0|)†)⊗ ((⊗n−1
i=0 I)(⊗n−1

i=0 I)†)

= (⊗n−1
i=0 I)⊗ |0〉 〈0| ⊗ (⊗dimi=n+1I)

= M0(n)

86

and similarly we prove that ∀ n ≤ dim : M1(n).M1(n)† = M1(n).

M0(n).M0(n)† +M1(n).M1(n)† = M0(n) +M1(n)

= ((⊗n−1
i=0 I)⊗ |0〉 〈0| ⊗ (⊗dimi=n+1I)) + ((⊗n−1

i=0 I)⊗ |1〉 〈1| ⊗ (⊗dimi=n+1I))

= (⊗n−1
i=0 I)⊗ (|0〉 〈0|+ |1〉 〈1|)⊗ (⊗dimi=n+1I)

= (⊗n−1
i=0 I)⊗ I ⊗ (⊗dimi=n+1I)

= ⊗dimi=0 I

A.2 Calculations

In 4.7.1, we did some calculations to obtain P [q2 measures to 1] and P [q2 measures to 1] for each one

of the possibilities in the final state of 5. Here we show the calculations with details:

ρ0 = (|0〉 ⊗ |0〉 ⊗ (α |0〉+ β |1〉))((α 〈0|+ β 〈1|)⊗ 〈0| ⊗ 〈0|)

=

|α|2 0 0 0 αβ 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
βα 0 0 0 |β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ρ1 = (I ⊗H ⊗ I)ρ0(I ⊗H ⊗ I)†

= 0.5

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

87

ρ2 = (I ⊗ CNOT)ρ1(I ⊗ CNOT)†

= 0.5

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0
2βα 2|β|2 0 0 2βα 2|β|2 0 0

2|α|2 2αβ 0 0 2|α|2 2αβ 0 0

ρ3 = (CNOT ⊗ I)ρ2(CNOT ⊗ I)†

= 0.5

2|α|2 2αβ 0 0 0 0 2|α|2 2αβ
2βα 2|β|2 0 0 0 0 2βα 2|β|2
2βα 2|β|2 0 0 0 0 2βα 2|β|2
2|α|2 2αβ 0 0 0 0 2|α|2 2αβ

2|α|2 2αβ 0 0 0 0 2|α|2 2αβ
2βα 2|β|2 0 0 0 0 2βα 2|β|2
2βα 2|β|2 0 0 0 0 2βα 2|β|2
2|α|2 2αβ 0 0 0 0 2|α|2 2αβ

ρ4 = (H ⊗ I ⊗ I)ρ3(H ⊗ I ⊗ I)†

= 0.25

4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ
4βα 4|β|2 4βα 4|β|2 4βα 4|β|2 4βα 4|β|2
4βα 4|β|2 4βα 4|β|2 4βα 4|β|2 4βα 4|β|2
4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ

4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ
4βα 4|β|2 2βα 4|β|2 4βα 4|β|2 4βα 4|β|2
4βα 4|β|2 2βα 4|β|2 4βα 4|β|2 4βα 4|β|2
4|α|2 4αβ 2|α|2 4αβ 4|α|2 4αβ 4|α|2 4αβ

ρ40
= (I ⊗ I ⊗ |0〉 〈0|)ρ4(I ⊗ I ⊗ |0〉 〈0|)†

= 0.25

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 4βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 2βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

88

ρ41
= (I ⊗ I ⊗ |1〉 〈1|)ρ4(I ⊗ I ⊗ |1〉 〈1|)†

= 0.25

0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ
0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ

ρ400 = (I ⊗ |0〉 〈0| ⊗ I)ρ40(I ⊗ |0〉 〈0| ⊗ I)†

= 0.25

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 4βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 2βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

ρ401
= (I ⊗ |0〉 〈0| ⊗ I)ρ41

(I ⊗ |0〉 〈0| ⊗ I)†

= 0.25

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 4βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

4|α|2 0 4|α|2 0 4|α|2 0 4|α|2 0
0 0 0 0 0 0 0 0

4βα 0 2βα 0 4βα 0 4βα 0
0 0 0 0 0 0 0 0

ρ410 = (I ⊗ |1〉 〈1| ⊗ I)ρ40(I ⊗ |1〉 〈1| ⊗ I)†

= 0.25

0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ
0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ

89

ρ411
= (I ⊗ |1〉 〈1| ⊗ I)ρ41

(I ⊗ |1〉 〈1| ⊗ I)†

= 0.25

0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ
0 0 0 0 0 0 0 0
0 4|β|2 0 4|β|2 0 4|β|2 0 4|β|2
0 0 0 0 0 0 0 0

0 4αβ 0 4αβ 0 4αβ 0 4αβ

ρ00 = ρ400

= 0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

ρ01 = (X ⊗ I ⊗ I)ρ401
(X ⊗ I ⊗ I)†

= 0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

ρ10 = (Z ⊗ I ⊗ I)ρ410(Z ⊗ I ⊗ I)†

= 0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

90

ρ11 = (X ⊗ I ⊗ I)(Z ⊗ I ⊗ I)ρ411
(Z ⊗ I ⊗ I)†(X ⊗ I ⊗ I)†

= 0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

the first state:

P [q2 measures to 0] = 〈000| ρ00 |000〉

= 0.25
(
1 0 0 0 0 0 0 0

)

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|β|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|α|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

1
0
0
0
0
0
0
0

= |α|2

P [q2 measures to 1] = 〈100| ρ00 |001〉

= 0.25
(
0 1 0 0 0 0 0 0

)

0 0 0 0 0 0 0 0
0 4|β|2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 4|α|2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4|β|2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4|α|2

0
1
0
0
0
0
0
0

= |β|2

the second state:

P [q2 measures to 0] = 〈010| ρ01 |010〉

=
(
0 0 1 0 0 0 0 0

)
0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

0
0
1
0
0
0
0
0

= |α|2

91

P [q2 measures to 1] = 〈110| ρ01 |011〉

=
(
0 0 0 1 0 0 0 0

)
0.25

0 0 0 0 0 0 0 0
0 4|α|2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 4|β|2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4|α|2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4|β|2

0
0
0
1
0
0
0
0

= |β|2

the third state:

P [q2 measures to 0] = 〈001| ρ10 |100〉

=
(
0 0 0 0 1 0 0 0

)
0.25

4|α|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|β|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|α|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4|β|2 0
0 0 0 0 0 0 0 0

0
0
0
0
1
0
0
0

= |α|2

P [q2 measures to 1] = 〈101| ρ10 |101〉

=
(
0 0 0 0 0 1 0 0

)
0.25

0 0 0 0 0 0 0 0
0 4|α|2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 4|β|2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4|β|2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4|α|2

0
0
0
0
0
1
0
0

= |β|2

92

the forth state:

P [q2 measures to 0] = 〈011| ρ11 |110〉

= 0.25
(
0 0 0 0 0 0 1 0

)

4|β|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|α|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4|β|2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 4|α|2 0
0 0 0 0 0 0 0 0

0
0
0
0
0
0
1
0

= |α|2

P [q2 measures to 1] = 〈111| ρ11 |111〉

= 0.25
(
0 0 0 0 0 0 0 1

)

0 0 0 0 0 0 0 0
0 4|α|2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 4|β|2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4|α|2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4|β|2

0
0
0
0
0
0
0
1

= |β|2

The following calculations refers to the expressions in 4.3:

ρ00 = (|0〉 〈0| ⊗ I)(X ⊗ I)(I ⊗ |0〉 〈0|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |0〉 〈0|)†(X ⊗ I)†(|0〉 〈0| ⊗ I)†

= 0.5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

ρ01 = (|1〉 〈1| ⊗ I)(X ⊗ I)(I ⊗ |0〉 〈0|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |0〉 〈0|)†(X ⊗ I)†(|1〉 〈1| ⊗ I)†

= 0.5

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

93

ρ10 = (|0〉 〈0| ⊗ I)(I ⊗ |1〉 〈1|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |1〉 〈1|)†(|0〉 〈0| ⊗ I)†

= 0.5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

ρ11 = (|1〉 〈1| ⊗ I)(I ⊗ |1〉 〈1|)(I ⊗H) |00〉 〈00| (I ⊗H)†(I ⊗ |1〉 〈1|)†(|1〉 〈1| ⊗ I)†

= 0.5

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

94

95

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings

	1 Introduction
	1.1 The Challenge of Correctness
	1.2 Formal Verification of Quantum Programs
	1.3 Objectives and Contributions
	1.4 Organization of the Document

	2 Quantum Computation: An overview
	2.1 A Brief History of Quantum Computing
	2.2 Mathematical Preliminaries
	2.2.1 Hilbert space
	2.2.2 Tensor Product
	2.2.3 Density Operators
	2.2.4 Unitary Transformation
	2.2.5 Superposition and Entanglement
	2.2.6 Measurement

	2.3 Quantum Circuit Model
	2.3.1 Quantum gates
	2.3.2 Quantum Oracles

	2.4 Some Quantum Algorithms
	2.4.1 Overview
	2.4.2 Quantum Teleportation
	2.4.3 Grover's Algorithm
	2.4.4 Deutsch-Josza Algorithm

	2.5 Quantum Programming Languages and Frameworks
	2.5.1 OpenQasm
	2.5.2 Qiskit
	2.5.3 Q#
	2.5.4 Cirq
	2.5.5 Silq

	3 Survey: Hoare Logics for Quantum Programs
	3.1 Chadha, Mateus and Sernadas’s EEQPL
	3.1.1 EEQPL rules

	3.2 Yoshihiko Kakutani’s QHL
	3.2.1 QHL rules

	3.3 Mingsheng Ying’s qPD
	3.3.1 qPD rules

	3.4 Feng-Ying Hoare Logic
	3.4.1 Feng-Ying Logic rules

	4 A Verified Quantum Programming Language with Hybrid Variables
	4.1 Syntax
	4.2 Variables and Types
	4.3 Quantum-Classical State
	4.4 Quantum-Classical Assertions
	4.5 State Update and Semantics
	4.6 A Hoare Logic for Quantum-Classical Programs
	4.7 A Use Case: Quantum Teleportation
	4.7.1 Reasoning using Operational Semantics
	4.7.2 Reasoning using Hoare Logic

	5 Mechanization in Coq
	5.1 Logic Mechanization
	5.2 Implementation Details
	5.2.1 Syntax.v
	5.2.2 State.v
	5.2.3 Semantics.v
	5.2.4 Assertion.v
	5.2.5 Logic.v
	5.2.6 Soundness.v
	5.2.7 Utils.v
	5.2.8 MatricesConverter.py
	5.2.9 Examples

	6 Conclusion
	6.1 Results
	6.2 Limitations of the Current Solution
	6.3 Suggestions and Future work
	6.3.1 Soundness and Completeness
	6.3.2 Automating proofs
	6.3.3 Discard Operation
	6.3.4 The Dimensional Explosion Problem
	6.3.5 Enhancing the Arithmetic, Boolean and Matricial Expressiveness
	6.3.6 Interoperability with External Quantum Computation Platforms

	Bibliography
	Appendix A

	A Some Proofs and Calculations
	A.1 Theorems
	A.2 Calculations

